MC4: Hadron Accelerators
A08 Linear Accelerators
Paper Title Page
MOPAB190 An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade 643
 
  • D.V. Neuffer, S.A. Belomestnykh, M. Checchin, D.E. Johnson, S. Posen, E. Pozdeyev, V.S. Pronskikh, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Increasing the Main Injector (MI) beam power above ~1.2 MW requires replacement of the 8 GeV Booster by a higher intensity alternative. Previously, rapid-cycling synchrotron (RCS) and Linac solutions were considered for this purpose. In this paper, we consider the Linac version that produces 8 GeV H beam for injection into the Recycler Ring (RR) or Main Injector (MI). The Linac takes ~1 GeV beam from the PIP-II Linac and accelerates it to ~2 GeV in a cw SRF linac, followed by a ~2-8 GeV pulsed linac using 1300 MHz cryomodules. The linac components incorporate recent improvements in SRF technology. The linac configuration and beam dynamics requirements are presented. Injection options are discussed. Research needed to implement the Booster replacement is described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB190  
About • paper received ※ 15 May 2021       paper accepted ※ 28 May 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB191 Method Development for Cavity Failure Compensation in a Superconducting Linac 647
 
  • F. Bouly
    LPSC, Grenoble Cedex, France
 
  Reliability is a major challenge within the perspective of improving the performances and sustainability of MegaWatt class accelerators. To optimize the operational costs of such accelerators the availability requirements are becoming more and more challenging. These requirements are even more stringent in the case of Accelerator Driven systems (ADS). As an example, for the MYRRHA (Multipurpose Hybrid Research Reactor for High-tech Applications) ADS demonstrator, the actual availability limit is set to a maximum of 10 beam interruptions (longer than 3 seconds) over a 3-month operating cycle. For this purpose, the accelerator design is based on a redundant and fault-tolerant scheme to enable rapid mitigation of a cavity failure. The adopted strategy is to apply for local compensation: a failed cavity is compensated by several neighboring cavities. Beam dynamics studies and method developments to apply such a failure compensation scheme are here reviewed. First simulation results for superconducting linac retuning and potential future improvements will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB191  
About • paper received ※ 19 May 2021       paper accepted ※ 21 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB192 LILac Energy Upgrade to 13 MeV 651
 
  • B. Koubek, S. Altürk, M. Busch, H. Höltermann, J.D. Kaiser, H. Podlech, U. Ratzinger, M. Schuett, M. Schwarz, W. Schweizer, D. Strehl, R. Tiede, C. Trageser
    BEVATECH, Frankfurt, Germany
  • A. Brunzel, P. Nonn, H. Schlarb
    DESY, Hamburg, Germany
  • A.V. Butenko, D.E. Donets, B.V. Golovenskiy, A. Govorov, K.A. Levterov, D.A. Lyuosev, A.A. Martynov, V.A. Monchinsky, D.O. Ponkin, K.V. Shevchenko, I.V. Shirikov, E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  In the frame of the NICA (Nuclotron-based Ion Collider fAcility) ion collider upgrade a new light ion LINAC for protons and ions will be built in collaboration between JINR and BEVATECH GmbH. While ions with a mass-to-charge ratio up to 3 will be fed into the NUCLOTRON ring with an energy of 7 MeV/u, protons are supposed to be accelerated up to an energy of 13 MeV using a third IH structure. This energy upgrade comprises a third IH structure, a dual-use Debuncher cavity as well as an extension of the LLRF control system built on MicroTCA technology.  
poster icon Poster MOPAB192 [4.914 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB192  
About • paper received ※ 11 May 2021       paper accepted ※ 31 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB194 First 3D Printed IH-Type Linac Structure - Proof-of-Concept for Additive Manufacturing of Linac rf Cavities 654
 
  • H. Hähnel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Additive manufacturing (or "3D printing") has become a powerful tool for rapid prototyping and manufacturing of complex geometries. As technology is evolving, the quality and accuracy of parts manufactured this way is ever improving. Especially interesting for the world of particle accelerators is the process of 3D printing of stainless steel (and copper) parts. We present the first fully functional IH-type drift tube structure manufactured by metal 3D printing. A 433 MHz prototype cavity has been constructed to act as a proof-of-concept for the technology. The cavity is designed to be UHV capable and includes cooling channels reaching into the stems of the DTL structure. We present the first experimental results for this prototype.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB194  
About • paper received ※ 18 May 2021       paper accepted ※ 01 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB195 Development of a Disk-and-Washer Cavity for the J-PARC Muon g-2/EDM Experiment 658
 
  • Y. Takeuchi, J. Tojo
    Kyushu University, Fukuoka, Japan
  • E. Cicek, K. Futatsukawa, N. Kawamura, T. Mibe, M. Otani, T. Yamazaki, M. Yoshida
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • R. Kitamura, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • Y. Nakazawa
    Ibaraki University, Hitachi, Ibaraki, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Sue, K. Sumi, M. Yotsuzuka
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  At J-PARC, an experiment using muons accelerated by a linac is planned to measure the anomalous magnetic moment of muons and to search for the electric dipole moment. A 1296 MHz disk and washer (DAW) coupled cavity linac (CCL) is being developed for use in the middle beta section of the muon linac. The DAW CCL consists of 14 tanks with 11 cells each. All tanks are connected by bridge couplers and electromagnetic quadrupole doublets for focusing are installed in each bridge coupler. The basic design of the DAW cavity has already been completed, and now detailed cavity design studies and manufacturing process studies are underway. In this poster, we will report about these studies and the preparation status of manufacturing the DAW cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB195  
About • paper received ※ 20 May 2021       paper accepted ※ 01 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB196 Field tuning of the 1 MeV/n RFQ at KOMAC 662
 
  • H.-J. Kwon, Y.-S. Cho, J.J. Dang, W.-H. Jung, D.-H. Kim, H.S. Kim, K.H. Kim, S. Lee
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Korea Multi-purpose Accelerator Complex (KOMAC) operation funds through Ministry of Science and ICT (MIST) of Korean Government.
A 1 MeV/n Radio-frequency Quadrupole (RFQ) is under development at Korea Multi-purpose Accelerator Complex (KOMAC), the purposes of which are swift ion beam irradiation and compact neutron source. The RFQ was designed to accelerate ions with mass to charge (A/q) ratio up to 2.5. The designed peak current was 10 mA with 10% duty ratio. The RFQ is four vane structure resonated at 200 MHz. It has total 40 frequency tuners. There are no dipole rods and resonant coupling plate because the mode separation was large enough and the length of the RFQ was only two times of the wavelength. In this paper, the development status and field tuning results of the 1 MeV/n RFQ are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB196  
About • paper received ※ 19 May 2021       paper accepted ※ 28 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB203 Benchmark of Superconducting Cavity Models at SNS Linac 671
 
  • A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
A benchmark of superconducting cavity models against Time-of-Flight measurements at the SNS linac is presented. The superconducting part of SNS linac (SCL) includes 81 RF cavities that accelerates H beam from 185.6 MeV to the final energy of 1 GeV. During the operation some of cavities can become unstable, and its amplitudes should be reduced, or they should be completely switched off. In this case, the SCL is retuned by using a linac simulation code. This simulation tool relay on an accuracy of the superconducting cavity model. This paper describes the comparison of the measured beam acceleration by one of the SCL cavities and simulations of this process. Different cavity models are used in simulations. The subject of this study is limited to the longitudinal beam dynamics, so no effects on transverse beam characteristics have been considered.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB203  
About • paper received ※ 14 May 2021       paper accepted ※ 20 May 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB205 Minerva (MYRRHA Phase 1) RFQ Beam Commissioning 675
 
  • A. Gatera, J. Belmans, F. Davin, W. De Cock, F. Doucet, L. Parez, F. Pompon, A. Ponton, D. Vandeplassche
    SCK•CEN, Mol, Belgium
  • F. Bouly
    LPSC, Grenoble Cedex, France
  • C. Joly, L. Perrot
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • H. Podlech
    IAP, Frankfurt am Main, Germany
  • J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
  • C. Zhang
    GSI, Darmstadt, Germany
 
  Funding: Part of this work was supported by the European Commission Framework Programme H2020, MYRTE project nr. 662186
The MYRRHA project aims at coupling a 600 MeV proton accelerator to a subcritical fission core operating at a thermal power of 60 MW. The nominal proton beam for this ADS has an intensity of 4 mA and is delivered in a quasi-CW mode. Phase 1 of the project will realize a 100 MeV, 4 mA superconducting linac with the mission of ensuring the ADS requirements in terms of reliability and fault tolerance. As part of the reliability optimization program the integrated prototyping of the MINERVA injector is ongoing. The front-end of the injector is composed of an ECR proton source, a 2.6 m long LEBT (low energy beam transport line) and a four-rod RFQ accelerating the beam to 1.5 MeV. The present contribution focuses on the current beam tests on the RFQ, including beam matching, RF conditioning, assessment of the cavities’ performances and accelerated beam characterisation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB205  
About • paper received ※ 19 May 2021       paper accepted ※ 31 May 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB206 The RF Parameters of Heavy Ions Linac 679
 
  • A. Sitnikov, G. Kropachev, T. Kulevoy, D.N. Selesnev, A.I. Semennikov
    ITEP, Moscow, Russia
  • M.L. Smetanin, A.V. Telnov, N.V. Zavyalov
    VNIIEF, Sarov, Russia
 
  The new linac for A/Z = 8, output energy 4 MeV/u and 3 mA current is under development at NRC "Kurchatov Institute"-ITEP. The linac consists of Radio-Frequency Quadrupole (RFQ) with operating frequency 40 MHz and two sections of Drift Tube Linac (DTL) with operating frequency 80 and 160 MHz, correspondently. Both DTL has a modular structure and consists of separated individually phased resonators with focusing magnetic quadrupoles located between the cavities. The DTL1 is based on the quarter-wave resonators meanwhile DTL2 is based on IH 5-gap resonators. The 6D beam matching between RFQ and DTLs is provided by magnetic quadrupole lenses and 2-gaps RF-bunchers. The paper presents results of the radio-frequency (RF) design of linac accelerating structures.  
poster icon Poster MOPAB206 [0.559 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB206  
About • paper received ※ 14 May 2021       paper accepted ※ 01 July 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB207 Design Guideline for Minimizing Space-Charge-Induced Emittance Growth 682
 
  • C. Zhang
    GSI, Darmstadt, Germany
 
  Space-charge-induced emittance growth is a big concern for designing low-energy and high-intensity linacs. The Equipartitioning Principle was introduced to minimize space-charge-induced emittance growth by removing free energy between the transverse and longitudinal degrees of freedom. In this study, a different design guideline is being proposed. It suggests holding the ratio of longitudinal emittance to transverse emittance around one and take advantage of low emittance transfer for minimizing emittance growth. Using a high-intensity RFQ accelerator as an example, a comparison between the two design methods has been made.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB207  
About • paper received ※ 17 May 2021       paper accepted ※ 21 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB208 LLRF Measurements and Cu-plating at the First-of-Series Cavity Section of the Alvarez 2.0 at GSI 686
 
  • M. Heilmann, T. Dettinger, X. Du, L. Groening, S. Mickat, A. Rubin
    GSI, Darmstadt, Germany
 
  The Alvarez 2.0 will replace the existing post-stripper DTL of the GSI UNILAC. Today’s GSI comprises the UNILAC and the synchrotron SIS18 and is going to serve as the injector chain for the Facility of Antiproton and Ion Research (FAIR). The new Alvarez-type DTL is operated at 108.4 MHz providing acceleration from 1.4 MeV/u to 11.4 MeV/u along a total length of 55 meters. The first-of-series (FoS) cavity section has 12 RF-gaps along a total length of 1.9 m. It is the first cavity section of the new DTL. All main components were delivered in 2019, followed by successful SAT and installation of the 11 drift tubes and copper-plating. Completion of first low level RF-measurements prior to copper plating and the subsequent plating are major project milestones. These proceedings report on the results and compares them to simulation using CST Microwave Studio.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB208  
About • paper received ※ 18 May 2021       paper accepted ※ 31 May 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB209 Commissioning of SANAEM RFQ Accelerator 690
 
  • B. Yasatekin, A. Alacakir, A.S. Bolukdemir, I. Kilic, Y. Olgac
    TENMAK-NUKEN, Ankara, Turkey
  • E. Cicek
    KEK, Ibaraki, Japan
  • E. Cosgun
    UNIST, Ulsan, Republic of Korea
 
  The former SANAEM RFQ is upgraded with a newly manufactured cavity, made of oxygen-free copper (OFC), having the capability of accelerating protons from 20 keV to 1.3 MeV. In the assembling of cavity vanes, flanges, etc., indium wire is preferred over the brazing process providing a more flexible and easy method for vacuum sealing. After assembling the cavity, argon plasma cleaning is performed for the final cleaning and RF pre-conditioning. Vacuum tests revealed that levels of 2·10-7 mbar could be achieved quite easily. RF power conditioning of the RFQ cavity is successfully completed with the observation of quite few sparks. In the commissioning tests with the proton beam, a magnetic analyzer is used to measure the energy of the particles. This paper presents the strategy and the results concerning the commissioning of the proton beam with special emphasis on the RFQ cavity.  
poster icon Poster MOPAB209 [5.076 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB209  
About • paper received ※ 19 May 2021       paper accepted ※ 14 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB210 High-Gradient Booster for Enhanced Proton Radiography at LANSCE 693
 
  • S.S. Kurennoy, Y.K. Batygin
    LANL, Los Alamos, New Mexico, USA
 
  Increasing energy of proton beam at LANSCE from 800 MeV to 3 GeV improves radiography resolution ~10 times. We propose accomplishing this energy boost with a compact cost-effective linac based on cryo-cooled normal conducting high-gradient RF accelerating structures. High-gradient structures exceeding 100 MV/m have been developed for electron acceleration and operate with short RF pulse lengths below 1 us. Though such parameters are unusual for typical proton linacs, they fit perfectly for proton radiography (pRad) applications. The pRad limits contiguous trains of beam micro-pulses to less than 80 ns to prevent blur in images. For a compact pRad booster at LANSCE, we develop a staged design: a short section to capture and compress the 800-MeV proton beam followed by the main high-gradient linac. Our beam dynamics study addresses the beam magnetic focusing and minimizing its energy spread, which are challenging in high-gradient structures but very important for successful pRad operation.  
poster icon Poster MOPAB210 [0.809 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB210  
About • paper received ※ 10 May 2021       paper accepted ※ 17 August 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXC08 Simulation and Beam Experiments of a Multi-Harmonics Buncher in SSC-Linac 1319
 
  • Q.Y. Kong, H. Du, P. Jin, L. Jing, X.N. Li, Z.S. Li, Zh. Liu, J.W. Xia, X. Yin, Y. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Funding: This work was supported by the National Natural Science Foundation of China(No. 11375243) and Guangdong Innovative and Entrepreneurial Research Team Program(No.2016ZT06G373).
A compact dual-gap Multi-Harmonics Buncher has been successfully used at the SSC-Linac, a linear accelerator dedicates to beam injection into SSC in HIRFL. SSC-Linac operates at 53.667MHz, which is forth time of the RF frequency of the SSC. In order to increase the longitudinal capture efficiency, and enhance the current out of SSC, an independent MHB(Multi-Harmonics Buncher) had been installed into the LEBT of SSC-Linac. The fundamental frequency of the MHB is 13.417MHz. The buncher adopts the mechanical structure of dual-gap and sawtooth waveform is generated by multi-harmonics synthetic technology. Beam performance simulation with MHB have been done with code BEAMPATH. Besides, 84Kr14+ beam has been bunched successfully using the MHB in our experiments, the maximum bunch efficiency of 86.1% has been measured in experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUXC08  
About • paper received ※ 31 May 2021       paper accepted ※ 12 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB016 ESS RFQ: Installation and Tuning at Lund 1372
 
  • P. Hamel, D. Chirpaz-Cerbat, M. Desmons, A.C. France, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Dubois, Y. Le Noa
    CEA-DRF-IRFU, France
 
  The 352 MHz Radio Frequency Quadrupole (RFQ) for the European Spallation Source ERIC (ESS) has been delivered by the end of 2019. It has been provided by CEA, IRFU, Saclay/France. It consists of five sections with a total length of 4.6 m and accelerates the 70 mA proton beam from 75 keV up to 3.6 MeV. It will be fed with 900 kW peak power through two coaxial loop couplers. The installation process (alignment, vacuum test), as well as the tuning process based on bead-pull measurements, is presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB016  
About • paper received ※ 18 May 2021       paper accepted ※ 06 July 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB166 A New Design of a Dressed Balloon Cavity with Superior Mechanical Properties 1769
 
  • R.A. Kostin, C. Jing, S. Ross
    Euclid Beamlabs, Bolingbrook, USA
  • I.V. Gonin, T.N. Khabiboulline, G.V. Romanov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • M.P. Kelly
    ANL, Lemont, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  Funding: Work supported by the SBIR program of the U.S. Department of Energy, under grant DE-SC0020781
Superconducting spoke cavities are prone to multipactor - resonant raise of a number of electrons due to secondary emission. Recently proposed and tested by TRIUMF balloon-type spoke cavity showed an outstanding multipactor (MP) suppression property but unfortunately serious Q degradation at high fields. A new fully developed design of a dressed balloon cavity which can be used for any proton linac SSR2 section is developed. The design incorporates additional EP ports for high Q-factor demonstration. Superior properties are demonstrated, such as effective multipactor suppression, 40% lower Lorentz force coefficient, zero sensitivity to external pressure. This paper presents the results of coupled structural Multiphysics analysis, and engineering design of the dressed balloon cavity with EP ports.
 
poster icon Poster TUPAB166 [1.394 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB166  
About • paper received ※ 15 May 2021       paper accepted ※ 21 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB168 Beam Commissioning of a 325 MHz Proton IH-DTL at XiPAF 1777
 
  • P.F. Ma, X. Guan, R. Tang, M.W. Wang, X.W. Wang, Q.Z. Xing, W.B. Ye, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • W. Chen, W.L. Liu, W. Lv, M.T. Qiu, B.C. Wang, D. Wang, M.C. Wang, Z.M. Wang, Y.H. Yan, Y. Yang, M.T. Zhao
    NINT, Xi’an, People’s Republic of China
 
  The Inter-Digital H-mode Drift Tube Linac (IH-DTL) is widely used as the main component of injectors for medical synchrotrons. This paper describes the beam commissioning of a compact 325 MHz IH-DTL with modified KONUS beam dynamics at Tsinghua University (THU). This IH-DTL accelerates the proton beam from 3 MeV to 7 MeV in 1m. The average energy of the beam is 7.0 MeV with the energy spread range of -0.6 MeV to 0.3 MeV. The output transverse normalized RMS emittance of the beam is 0.58 (x)/0.58 (y) pi mm mrad with the input emittance of 0.43 (x)/0.37 (y) pi mm mrad. The beam test results show good agreement with the beam dynamics design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB168  
About • paper received ※ 08 May 2021       paper accepted ※ 16 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB169 Overall Concept Design of a Heavy-Ion Injector for XiPAF-Upgrading 1781
 
  • P.F. Ma, C.T. Du, X. Guan, Y. Lei, M.W. Wang, X.W. Wang, Q.Z. Xing, X.D. Yu, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • W. Chen, W.L. Liu, W. Lv, M.T. Qiu, B.C. Wang, D. Wang, M.C. Wang, Z.M. Wang, Y.H. Yan, M.T. Zhao
    NINT, Xi’an, People’s Republic of China
 
  A heavy-ion injector can be used for SEE study. In this paper, the primary beam dynamics design of a heavy-ion injector for the XiPAF upgrade is presented. The injector consists of an ECR heavy-ion source, a LEBT, an RFQ, and a DTL. The mass charge ratio can be up to 6.5. The RFQ can accelerate heavy ions to 500 keV/u, and the DTL can accelerate the ions to 2 MeV/u, which can meet the requirement of the synchrotron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB169  
About • paper received ※ 16 May 2021       paper accepted ※ 16 June 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB173 ESS Drift Tube Linac Manufacturing, Assembly and Tuning 1797
 
  • F. Grespan, L. Antoniazzi, A. Baldo, C. Baltador, A. Battistello, L. Bellan, P. Bottin, M. Comunian, D. Conventi, E. Fagotti, L. Ferrari, A. Palmieri, R. Panizzolo, A. Pisent, D. Scarpa
    INFN/LNL, Legnaro (PD), Italy
  • R.A. Baron
    ESS, Lund, Sweden
  • T. Bencivenga, P. Mereu, C. Mingioni, M. Nenni, E. Nicoletti
    INFN-Torino, Torino, Italy
  • A.G. Colombo
    INFN- Sez. di Padova, Padova, Italy
  • B. Jones
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Drift Tube Linac (DTL) for the ESS Linac will accelerate H+-beams of up to 62.5 mA peak current from 3.62 to 90 MeV. The structure consists of five cavities. The first cavity (DTL1) is a 7.6 m long tank containing 60 drift tubes, 23 fixed tuners, 3 movable tuners and 24 post-couplers, operating at a frequency of 352.21 MHz and an average accelerating field of 3.0 MV/m. The cavity is now assembled at ESS, the results of alignment and tuning are here presented. The DTL1 "as-built" as been analyzed from the beam dynamics point of view. The manufacturing of DTL4 and DTL3 is completed and they are now under assembly at ESS. DTL2 and DTL5 manufacturing will be completed within 2021. The paper describes the production and assembly stages, with a focus on the statistics of quality check in terms of metrology, alignment, leak tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB173  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB01 The ESS Elliptical Cavity Cryomodules Production at CEA 2536
 
  • C. Madec
    CEA, Gif-sur-Yvette, France
  • C. Arcambal, S. Berry, A. Bouygues, G. Devanz, C. Mayri, P. Sahuquet, T. Trublet
    CEA-DRF-IRFU, France
  • P. Bosland, E. Cenni, C. Cloué, T. Hamelin, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
  • P. Pierini
    ESS, Lund, Sweden
 
  CEA in Kind contribution to the ESS superconducting LINAC includes 30 elliptical medium and high-beta cryomodules. CEA is in charge of the production of all the components (except the cavities delivered by LASA and STFC) as well as the assembly of the cryomodules and a few cryogenic and RF tests. The power couplers operating at a maximum power of 1.1MW on a 3.6ms pulse at 14Hz are conditioned at high RF power on a dedicated stand. The assembly of the cryomodules is performed at CEA by a private Company under the supervision of CEA. This paper presents the status of the cryomodules production and the infrastructure dedicated to this project at CEA Saclay.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXB01  
About • paper received ※ 18 May 2021       paper accepted ※ 19 July 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB03
The Multi-User Upgrade of the Superconducting Ion Linac, ATLAS  
 
  • B.M. Mustapha
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. This research used the ATLAS facility, which is a DOE Office of Nuclear Physics User Facility.
The recently approved multi-user upgrade of the superconducting ion linac, ATLAS, will enable simultaneous acceleration and delivery of two different ion beams to different experimental areas. In the initial phase, one stable, nearly continuous wave, beam from the ECR ion source and one pulsed radioactive beam from the EBIS charge breeder of the Californium Rare Isotope Beam Upgrade (CARIBU-EBIS) will be interleaved in time via an electrostatic deflector at injection, and accelerated through the first two sections of the linac. At that point, one of the beams is deflected via a pulsed switching magnet to a lower energy experimental area while the other is further accelerated through the third linac stage of ATLAS and delivered to a higher energy experimental area. Details of the proposed implementation and the expected gains from this upgrade will be presented. In addition to enhancing the ATLAS nuclear physics program, this upgrade will also increase the availability of beam time for applications such as material irradiation, isotope production R&D, and radiobiology studies with ion beams. A brief overview and typical results from these applications will be presented.
 
slides icon Slides WEXB03 [2.024 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB04
Commissioning of the Radioactive Ion Beam Transport System for ARIEL  
 
  • S. Saminathan, F. Ames, T.D. Angus, R.A. Baartman, P.E. Dirksen, K. Ezawa, M. Marchetto, M. Rowe, B.E. Schultz
    TRIUMF, Vancouver, Canada
 
  The ARIEL facility is being commissioned to triple the availability of radioactive ion beams with ISAC at TRIUMF. The ARIEL separator and front-end facility also referred to as radioactive ion beam (RIB) transport system, connects the two new ARIEL target stations to the existing ISAC facility. The RIB transport system acts as a switchyard, in excess of 200 meters of beamlines, for delivering two additional simultaneous beams from the two ARIEL target ion sources. The primary optical building blocks of the RIB transport system are the matching, periodic, order-reversing, low-beta-insertion, dogleg, and achromatic bend sections. These blocks consist of electrostatic optical elements such as quadrupole, bender, and steerer. The first phase of the ARIEL installation is completed, and commissioning is well underway. The paper will describe the recent commissioning and early operation results of the ARIEL RIB transport system.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB05 Beam Commissioning SPIRAL2 2540
 
  • A.K. Orduz, M. Di Giacomo, R. Ferdinand, B. Jacquot, O. Kamalou, J.-M. Lagniel, G. Normand, A. Savalle
    GANIL, Caen, France
  • D. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
 
  The SPIRAL2 injector includes a 5 mA proton-deuteron ECR source, a 1 mA ECR heavy ion source (up to A/Q =3) and a CW 0.73 MeV/u RFQ. It has been successfully commissioned using a diagnostic-plate in parallel with the superconducting linac installation. The green light has been obtained for the LINAC commissioning in July of 2019, starting with the Medium Energy Beam Transport (MEBT) commissioning with protons then with helium in 2020. The MEBT line and tuning process are described. The main experimental results are given, including the emittance and profile measurements which are compared with TraceWin simulations. RFQ output energy variation has been found due to an input energy error, its correction optimizing the source platform voltage is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXB05  
About • paper received ※ 19 May 2021       paper accepted ※ 25 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB176 Acceleration of He+ Beams for Injection Into NICA Booster During its First Run 3016
 
  • K.A. Levterov, V.P. Akimov, D.S. Letkin, D.O. Leushin, V.V. Mialkovskiy
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • A.M. Bazanov, A.V. Butenko, D.E. Donets, D. Egorov, A.R. Galimov, B.V. Golovenskiy, A. Govorov, V.V. Kobets, A.D. Kovalenko, D.A. Lyuosev, A.A. Martynov, V.A. Monchinsky, D.O. Ponkin, I.V. Shirikov, A.O. Sidorin, E. Syresin, G.V. Trubnikov, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • H. Höltermann, H. Podlech
    BEVATECH, Frankfurt, Germany
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  Heavy Ion Linear Accelerator (HILAC) is designed to accelerate the heavy ions with ratio A/Z<=6.25 produced by ESIS ion source up to the 3.2 MeV for the injection into superconducting synchrotron (SC) Booster. HILAC was commissioned in 2018 using the carbon beams from Laser Ion Source (LIS). The project output energy was verified. Transmission could be estimated only for DTL structure because of the presence at the RFQ input the mixture of ions with different charge states extracted from laser-plasma. To estimate transmission through the whole linac the ion source producing the only species He+ was designed. The beams of He+ ions were used for the first run of SC Booster. The design of the helium ion source and results of the He+ beam acceleration and injection are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB176  
About • paper received ※ 19 May 2021       paper accepted ※ 11 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB173 Fundamental Study on Electromagnetic Characteristics of Half-Wave Resonator for 200 MeV Energy Upgrade of KOMAC Proton Linac 4098
 
  • J.J. Dang, Y.-S. Cho, H.S. Kim, H.-J. Kwon, S. Lee
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by the Korea government (MSIT).
A superconducting linac has been developed at KOrea Multi-purpose Accelerator Complex (KOMAC). A goal of the SRF linac is to increase proton beam energy from 100 MeV to 200 MeV. 350 MHz medium beta half-wave resonator (HWR) should provide 3.6 MV accelerating voltage to achieve the energy upgrade. An electromagnetic (EM) analysis on the parametrically designed HWR cavity was conducted. The cavity design was optimized to reduce a peak electric field and a peak magnetic field while satisfying the required acerating voltage. In addition, a mechanical-EM coupled simulation was conducted to estimate a helium pressure sensitivity. Also, Lorentz force detuning was simulated. The design is being optimized to minimize the frequency detuning due to the helium pressure and Lorentz force.
 
poster icon Poster THPAB173 [0.800 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB173  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB181 AI-ML Developments for the ATLAS Ion Linac Facility 4122
 
  • B.M. Mustapha, B.R. Blomberg, C. Dickerson, J.L. Martinez Marin, C.E. Peters
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. This research used the ATLAS facility, which is a DOE Office of Nuclear Physics User Facility.
ATLAS is a DOE/NP User Facility for the study of low-energy nuclear physics with heavy ions. It operates ~6000 hours per year. In addition to delivering any stable beam from proton to uranium, the facility also provides radioactive beams from the CARIBU source or via the in-flight radioactive ion separator, RAISOR. The facility uses 3 ion sources and services 6 target areas at energies from ~1-15 MeV/u. To accommodate the large number and variety of approved experiments, ATLAS reconfigures once or twice per week over 40 weeks of operation per year. The startup time varies from ~12-48 hours depending on the complexity of the tuning, which will increase with the upcoming Multi-User Upgrade to deliver beam to two experimental stations simultaneously. DOE/NP has recently approved a project to use AI/ML to support ATLAS operations. The project aim is to significantly reduce the accelerator tuning time and improve machine performance by developing and deploying artificial intelligence methods. These improvements will increase the scientific throughput of the facility and the quality of the data collected. Our recent developments and future plans will be presented and discussed.
 
poster icon Poster THPAB181 [1.034 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB181  
About • paper received ※ 06 June 2021       paper accepted ※ 28 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB185 Solution to Beam Transmission Decline in the CSNS Linac Operation Using Measurements and Simulations 4134
 
  • J. Peng, M.T. Li, X.H. Lu, X.B. Luo
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, S. Fu, L. Huang, M.Y. Huang, Y. Li, Z.P. Li, S. Wang, S.Y. Xu, Y. Yuan
    IHEP, Beijing, People’s Republic of China
 
  The CSNS linac operation at its design average power currently. However, the beam transmission is declining and the beam loss is increasing during the operation. With simulations and experiments, we found there is a long longitudinal tail exist in the beam bunch output from the RFQ. And this tail caused the beam loss in the following linac. After inhibition of the longitudinal tail in the beam bunch, the beam transmission in operation can keep stable.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB185  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB187 Determination of Required Tolerances and Stop Band Width for Cells Manufacturing and Tuning in Compensated High Energy Accelerating Structures 4139
 
  • I.V. Rybakov, V.V. Paramonov
    RAS/INR, Moscow, Russia
 
  The required value of the spread for accelerating field distribution comes from the beam dynamics conditions and for cavities in high energy hadron linacs is ~1%. The standard deviation of the accelerating field distribution depends on the spread in frequencies of accelerating and coupling cells, stop bandwidth and deviations in coupling coefficients. The deviations in frequencies for accelerating, coupling cells, coupling coefficients, are directly related to tolerances manufacturing tolerances for cells. The stop bandwidth should be adjusted with cell tuning. Relations between the standard deviation of field distribution and deviations in cells parameters* are known. Together with the relation between deviations in cells dimensions and cells parameters** recommendations for cells manufacturing tolerances could be obtained. In relation to the coupling coefficient of compensated accelerating structures (ACS, SCS, CDS, DAW) for high-energy parts of linacs some recommendations for the determination of optimal manufacturing tolerances and acceptable stopband are presented.
* V.F. Vikulov and V.E. Kalyuzhny // Tech. Phys., v. 50, 1980, pp. 773-779
** I.V. Rybakov, V.V. Paramonov, A.K. Skassyrskaya // Proc. RuPAC 2016, pp. 291-293
 
poster icon Poster THPAB187 [0.649 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB187  
About • paper received ※ 18 May 2021       paper accepted ※ 25 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB286 Quadrupole Focusing Lenses for Heavy Ion Linac 4359
 
  • V. Skachkov, A.V. Kozlov, G. Kropachev, T. Kulevoy, D.A. Liakin, O.S. Sergeeva, V.S. Skachkov, Yu. Stasevich
    ITEP, Moscow, Russia
 
  Simulation results of pulsed current electromagnet quadrupoles with integral of the magnetic field gradient up to 7 T are presented. Magnets for the DTL and MEBT focusing channels are designing for the heavy-ion linac in Institute for Theoretical and Experimental Physics (ITEP - NRC "Kurchatov Institute"). Appropriate conditions which promise getting the magnetic lens parameters required at restrictions on the overall length <130 mm as well as on the beam aperture >45 mm are defined. It is shown that the channel acceptance to beam emittance ratio desired not less than 3 can be provided by conventional low-carbon steel up to a magnetic aperture of 50 mm in diameter while beyond this size permendur is out of competition. Some aspects of the pulsed power supply system are considered and main parameters of the pulse current generator (PCG) are given.  
poster icon Poster THPAB286 [0.701 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB286  
About • paper received ※ 14 May 2021       paper accepted ※ 30 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)