Keyword: beam-losses
Paper Title Other Keywords Page
MOPAB007 Status of Crystal Collimation Studies at the LHC collimation, proton, injection, ion 84
 
  • R. Rossi, O. Aberle, O.O. Andreassen, M.E.J. Butcher, C.A. Dionisio Barreto, I. Lamas Garcia, A. Masi, D. Mirarchi, S. Montesano, S. Redaelli, A. Rijllart, W. Scandale, P. Serrano Galvez, G. Valentino
    CERN, Geneva, Switzerland
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
 
  Crystal collimation is a technique that relies on highly pure bent crystals to coherently deflect beam particles - through the channeling mechanisms - onto dedicated absorbers. Standard multi-stage collimation systems for hadron beams use amorphous materials as primary collimators and might be limited by nuclear interactions and ion fragmentation that are strongly suppressed in crystals. A crystal collimation setup was installed in the betatron cleaning insertion of the Large Hadron Collider (LHC) to demonstrate with LHC beams the feasibility of this concept and to compare its performance with that of the present system. Channeling was observed for the first time with 6.5 TeV beam and and plans for further crystal collimation beam tests at the LHC are discussed. Results of these first beam tests are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB009 Decomposition of Beam Losses at LHC betatron, proton, distributed, collimation 88
 
  • B. Salvachua, D. Mirarchi, M. Pojer, S. Redaelli, R. Rossi, G. Valentino, M. Wyszynski
    CERN, Geneva, Switzerland
 
  The LHC collimation system provides betatron cleaning and off-momentum cleaning in two different locations of the LHC ring. In the betatron cleaning area, three primary collimators cut the primary halo in horizontal, vertical and skew planes. The beam loss monitors located downstream each of these collimators can be used to diagnose the main plane of loss. We present here a method to identify these beam losses at the LHC and decompose them as a linear combination of loss scenarios using singular value decomposition to calculate Moore-Penrose pseudoinverse of the scenario matrix. This matrix has been used to evaluate the type of beam losses in different stages of the LHC cycle.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAB3 Development of Wide Dynamic Range Beam Loss Monitor System for the J-PARC Main Ring detector, operation, injection, extraction 1248
 
  • K. Satou, N. Kamikubota, T. Toyama, S. Yamada
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • S.Y. Yoshida
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
 
  The new beam loss monitor (BLM) system now in operation at the main ring of J-PARC consists of an isolated front-end current to voltage converter, a VME-based 24 bit ADC system. A dual detector system employs a proportional-type gas chamber (PBLM) and an air-filled ionization chamber (AIC). The system shows a wide dynamic range of 160 dB. It can detect the low level signal that would arise in the case of the detection of residual dose in the ring itself after the beam has been turned off as well as an event such as high level beam loss at the collimators. The signal rise time of the waveform obtained is 17 us which fast enough to meet the speed requirement of the Machine Protection System (MPS); which is that the MPS should dump the beam within 100 us when the beam loss signal exceeds the reference levels set in the ADC system.  
slides icon Slides TUOAB3 [2.692 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOAB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA012 Beam Related Machine Protection of the Future Circular Collider proton, collider, dipole, operation 2063
 
  • Y.C. Nie, M. Jonker, R. Schmidt
    CERN, Geneva, Switzerland
 
  In the Future Circular Collider (FCC) study, each nominal proton beam at top particle energy of 50 TeV has an energy of 8500 MJ, which is more than 20 times the energy of today's Large Hadron Collider (LHC) beam. Machine protection of such a high-energy and high-energy density accelerator becomes very challenging. In this paper, preliminary considerations of beam related machine protection issues of the FCC will be reported. Based on the current optics design, a few major critical equipment failures that could potentially lead to very fast (within a few turns) beam losses have been studied. The serious failure scenarios that have been considered, typically occurring at locations with high beta functions, include powering failures of normal conducting magnets, quenches of superconducting magnets as well as critical RF failures. Some fundamental questions related to the beam interlock system, e.g., the need for additional particle free abort gaps to shorten the synchronization time before executing a beam dump, will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA025 Observations of Beam Losses at the LHC During Reduction of Crossing Angle experiment, proton, beam-beam-effects, luminosity 2105
 
  • B. Salvachua, X. Buffat, A.A. Gorzawski, T. Pieloni, S. Redaelli, C. Tambasco, J. Wenninger
    CERN, Geneva, Switzerland
  • J. Barranco García, A.A. Gorzawski
    EPFL, Lausanne, Switzerland
  • M.P. Crouch
    UMAN, Manchester, United Kingdom
 
  Several machine development studies have been performed in 2016 at the LHC in order to evaluate the effects of reducing the crossing angles in favor of defining the maximum achievable luminosity in the ATLAS and CMS experiments. At the end of the LHC proton-proton run at 6.5TeV the reduction of the crossing angle from 185urad to 140urad was operationally implemented. The observation of beam losses and lifetimes during this process are analysed and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA060 Upgrade of GSI HADES Beamline in Preparation for High Intensity Runs quadrupole, target, optics, dipole 2214
 
  • M. Sapinski, P. Boutachkov, S. Damjanovic, K. Dermati, C.M. Kleffner, J. Pietraszko, T. Radon, S. Ratschow, S. Reimann, W. Sturm, B. Walasek-Höhne
    GSI, Darmstadt, Germany
 
  HADES is a fixed target experiment using SIS18 heavy-ion beams. It investigates the microscopic properties of matter formed in heavy-ion, proton and pion - induced reactions in the 1-3.5 GeV/u energy regime. In 2014 HADES used a secondary pion beam produced by interaction between high-intensity nitrogen primary beam and a beryllium target. In these conditions beam losses, generated by slow extraction and beam transport to the experimental area, led to activation of the beam line elements and triggered radiation alarms. The primary beam intensity had to be reduced and the beam optics modified in order to keep radiation levels within the allowed limits. Similar beam conditions are requested by HADES experiment for upcoming run in 2018 and in the following years. Therefore, a number of measures have been proposed to improve beam transmission and quality. These measures are: additional shielding, additional beam instrumentation, modification of beam optics and increase of vacuum chambers' apertures in critical locations. The optics study and preliminary results of FLUKA simulations for optimization of location of loss detectors are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA093 Radio-Activation Caused by Secondary Particles Due to Nuclear Reactions at the Stripper Foil in the J-PARC RCS injection, proton, operation, synchrotron 2300
 
  • M. Yoshimoto, H. Hotchi, S. Kato, M. Kinsho, K. Okabe, K. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The most important issue in realizing such a MW-class high-power routine beam operation is to keep machine activations within a permissible level, that is, to preserve a better hands-on-maintenance environment. Thus, a large fraction of our effort has been concentrated on reducing and managing beam losses. However the high residual activation is appeared around the stripper foils. It is caused by not primary particles due to the beam losses but secondary particles due to nuclear reaction at the foil. This radio-activation is an intrinsically serious problem for the RCS which adopts the charge exchange multi-turn beam injection scheme with the stripper foil. In this presentation, we report a detail measurement of the residual dose around the stripper foil together with the cause estimated based on simulation studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA143 Reduction of Beam Losses in LANSCE Isotope Production Facility proton, emittance, DTL, target 2432
 
  • Y.K. Batygin
    LANL, Los Alamos, New Mexico, USA
 
  The LANSCE Isotope Production Facility (IPF) utilizes a 100-MeV proton beam with average power of 23 kW for isotope production in the fields of medicine, nuclear physics, national security, environmental science and industry. Typical tolerable fractional beam loss in the 100-MeV beamline is approximately 4 x10-3. During 2015-2016 operation cycle, several improvements were made to minimize the beam losses. Adjustments to the ion source's extraction voltage resulted in the removal of tails in phase space. Beam based steering in low-energy and high-energy beamlines led to the reduction of beam emittance growth. Readjustment of the 100-MeV quadrupole transport resulted in the elimination of excessive beam envelope oscillations and removed significant parts of the beam halo at the target. Careful beam matching in the drift tube linac (DTL) provided high beam capture (75% - 80%) and minimized beam emittance growth in the DTL. After improvements, beam losses in the 100-MeV beamline were reduced by an order of magnitude and reached the fractional level of 5 x10-4.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA143  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK088 Analysis of Performance Fluctuations for the CERN Proton Synchrotron Multi-Turn Extraction extraction, proton, synchrotron, target 3135
 
  • M. Giovannozzi, A. Huschauer, O. Michels, A. Nicoletti, G. Sterbini
    CERN, Geneva, Switzerland
 
  After the successful beam commissioning and tests in 2015, the Multi-Turn Extraction (MTE) has been put in operation in 2016. In this paper, the remaining issues related with fluctuation of the MTE performance are evaluated and correlation studies are presented in view of estimating the impact of planned improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA123 Neutron Doses Due to Beam Losses in a Novel Concept of a Proton Therapy Gantry neutron, proton, simulation, dipole 4736
 
  • V. Talanov, D.C. Kiselev, D. Meer, V. Rizzoglio, J.M. Schippers, M. Seidel, M. Wohlmuther
    PSI, Villigen PSI, Switzerland
 
  A novel design of a gantry for proton therapy is investigated in which a degrader and emittance limiting collimators are mounted on the gantry. Due to the interactions of protons in these components there will be an additional neutron dose at the location where a patient is positioned during a proton therapy. The results of numerical study of this additional dose are presented. Neutron prompt dose at the patient position is estimated through the Monte Carlo simulation using the MCNPX 2.7.0 particle transport code. Secondary neutron and photon fluxes from the distinct beam loss points are taken into consideration and the resulting dose is calculated using realistic estimates of beam losses. The dependence of the dose on the beam energy and individual impacts of each loss point on the total dose at the patient position as well as on critical beam line components are estimated and potential design constraints are discussed. It has been found that compared with a conventional gantry the expected additional dose is higher but the optimization of the beam line configuration and additional shielding shall help to reduce the dose to an acceptable value.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)