Keyword: beam-beam-effects
Paper Title Other Keywords Page
TUPVA010 Multiparametric Response of the HL-LHC Dynamic Aperture in Presence of Beam-Beam Effects luminosity, octupole, simulation, emittance 2055
 
  • D. Pellegrini, S.D. Fartoukh, N. Karastathis, Y. Papaphilippou
    CERN, Geneva, Switzerland
 
  We performed extended simulations of HL-LHC dynamic aperture in the presence of beam-beam effects in the weak- strong approximation, evaluating the contributions of param- eters such as: bunch intensity, crossing angle, chromaticity, current in the Landau octupoles and multipole errors. From the beam dynamics point of view, the main differ- ence between the LHC (until 2017) and the HL-LHC is the deployment of the achromatic telescopic squeezing (ATS) optics, allowing not only for a smaller '' reach, but also modifying the phase advances between the lattice correctors (sextupoles, octupoles) and the main IPs, and increasing the peak ' functions in the arcs. These correctors become therefore more efficient for the chromatic correction, but also a mitigation of the beam-beam long range interactions using the Landau octupoles is enabled, resulting in a possible reduction of the normalised crossing angle. The limits have been investigated in a tracking simulation campaign aimed at exploring the operational space for the HL-LHC and two possible options for luminosity levelling.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA025 Observations of Beam Losses at the LHC During Reduction of Crossing Angle experiment, beam-losses, proton, luminosity 2105
 
  • B. Salvachua, X. Buffat, A.A. Gorzawski, T. Pieloni, S. Redaelli, C. Tambasco, J. Wenninger
    CERN, Geneva, Switzerland
  • J. Barranco García, A.A. Gorzawski
    EPFL, Lausanne, Switzerland
  • M.P. Crouch
    UMAN, Manchester, United Kingdom
 
  Several machine development studies have been performed in 2016 at the LHC in order to evaluate the effects of reducing the crossing angles in favor of defining the maximum achievable luminosity in the ATLAS and CMS experiments. At the end of the LHC proton-proton run at 6.5TeV the reduction of the crossing angle from 185urad to 140urad was operationally implemented. The observation of beam losses and lifetimes during this process are analysed and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA027 Study of Beam-Beam Long Range Compensation with Octupoles octupole, optics, dynamic-aperture, resonance 2113
 
  • T. Pieloni, J. Barranco García, C. Tambasco
    EPFL, Lausanne, Switzerland
  • X. Buffat, C. Tambasco
    CERN, Geneva, Switzerland
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol), EU's Horizon 2020 grant No 654305.
Long range beam-beam effects are responsible for particle losses and define fundamental operational parameters of colliders (i.e. crossing angles, intensities, emittances, β*). In this study we propose octuple magnets as a possible scheme to efficiently compensate long-range beam-beam interactions with a global correction scheme. The impact and improvements on the dynamic aperture of colliding beams together with estimates of the luminosity potentials are discussed for the HL-LHC upgrade and extrapolations made for the FCC project. Results are compared to other compensating schemes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB044 Development of Computational Tools for Noise Studies in the LHC simulation, GPU, Windows, emittance 3807
 
  • S. Kostoglou, N. Karastathis, Y. Papaphilippou, D. Pellegrini, P. Zisopoulos
    CERN, Geneva, Switzerland
  • P. Zisopoulos
    Uppsala University, Uppsala, Sweden
 
  Noise can have a significant impact on the beam dynamics in the LHC, enhancing diffusion processes and leading to emittance blowup. In order to study the details of such effects with computer simulations, a new set of tools is being developed. In particular, a demonstrator GPU-based particle tracker has been built profiting from the technology provided by the NVRTC Cuda library. Its performances for short term beam dynamic simulations in presence of many macro particles are highly promising. In addition, the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm has been thoroughly inspected. Several alternatives to its fundamental steps have been investigated in a modern C++ implementation. The method was also used to produce Frequency Maps and benchmark these tools with other simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB082 The Beam-Beam Effect and Its Consequences for the Modeling of the Jefferson Lab EIC electron, proton, emittance, collider 3909
 
  • E.W. Nissen
    JLab, Newport News, Virginia, USA
 
  Funding: Notice: This manuscript has been authored by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 with the U.S. Department of Energy
In this work we address the effect of beam jitter on emittance growth as caused by the beam-beam effect on the Jefferson Lab Electron Ion Collider (JLEIC). This proposed collider would collide up to 100 GeV proton beams with up to 10 GeV electron beams. Due to the asymmetric rigidities of the beams and their non-linear lensing action on each other during a collision, collective effects can limit beam storage times. Using simulations we determined that one of JLEIC's synchronization concepts would require a new set of software tools to accurately understand phase space evolution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB086 Long-Term Simulations of Beam-Beam Dynamics on GPUs GPU, simulation, collider, electron 3918
 
  • B. Terzić, C.M. Cotnoir, A.L. Godunov, T. Satogata, M. Stefani
    ODU, Norfolk, Virginia, USA
  • A. Arumugam, R.T. Majeti, D. Ranjan, M. Zubair
    ODU CS, Norfolk, Virginia, USA
  • F. Lin, V.S. Morozov, E.W. Nissen, Y. Roblin, T. Satogata, H. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Jefferson Lab
Future machines such as the electron-ion colliders (JLEIC), linac-ring machines (eRHIC) or LHeC are particularly sensitive to beam-beam effects. This is the limiting factor for long-term stability and high luminosity reach. The complexity of the non-linear dynamics makes it challenging to perform such simulations which require millions of turns. Until recently, most of the methods used linear approximations and/or tracking for a limited number of turns. We have developed a framework which exploits a massively parallel Graphical Processing Units (GPU) architecture to allow for tracking millions of turns in a sympletic way up to an arbitrary order and colliding them at each turn. The code is called GHOST for GPU-accelerated High-Order Symplectic Tracking. As of now, there is no other code in existence that can accurately model the single-particle non-linear dynamics and the beam-beam effect at the same time for a large enough number of turns required to verify the long-term stability of a collider. Our approach relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for the beam-beam interaction.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)