Development of Wide Dynamic Range Beam Loss Monitor System for J-PARC Main Ring

Kenichirou Satou¹, Takeshi Toyama¹, Norihiko Kamikubota¹, Shuei Yamada¹, Susumu Yoshida² 1: J-PARC/KEK 2: Kanto Information Service

Contents

- Old system
 - Proportional chamber type BLM
 - Merit (High gas gain) and demerit (Gain change)
- New system
 - Requirements for the new system
 - Detectors
 - New amp and ADC
- Data from the new system
- Summary

Old BLM system 1

- Old system used mainly proportional chamber type BLM (PBLM)
- High gain: 20000(averaged) @ max. Bias=2kV
- The high gas gain performance Sood performances for early stage of beam commissioning (low intensity, 1% of full)

- Manufacturer : Toshiba Electron Tubes & Devices
- •anode wire : φ50 μm, Pt
- •Inner tube : φ23 mm (inside), SUS304
- •Outer tube : φ47.8 mm (inside), SUS304
- •Gas : Ar+CO₂ 1%
- •Gas pressure: 1.1 atm

Old system 2

Drift time of positive ions from the central wire

- Due to the **slow drift velocity of the ion**, it takes about **3ms from anode to HV tube**.
- The positive ion in the gas **decreases E field near anode** and thus **gas gain decreases.**
- Depending on the intensity of output current, the gain will be changed
 - 1 μA and 10 μA output DC current results in 4 % and 40 % decrease in case of -1.6kV bias
 - The output DC current should be kept under $1\mu A$.
- The dynamic range is limited to by this saturation current -> Cannot cover whole range of beam loss event.
 - Shows non-linearity, Under estimation in case of high level beam loss which occurred for example in the collimator section.
- Conversion impedance of the front end amp was $100k\Omega$. The output voltage is only 0.1 V for $1\mu A$ input -> New Amp

Requirements for the new system

• Intensity : 4E11 ~4E13 ppb

Detect losses from the low intensity beams during the beam commissioning phase, where the beam intensity is only **1 % of the designed maximum intensity of 4E13 protons** per bunch (eight bunches for full).

• MPS : Beam dump within 100us

Detect an unusual loss of power in the beam and send an alarm to the Machine Protection System (MPS) to dump the beam within 100 μ s.

Loss power : 0.5W/m @Arc section, 2kW@Collimators, 7.5kW@SX, 1.125kW@FX

Beam power loss limits in the main ring (MR) are **0.5 W/m** @arc sections, **2 kW@**collimators, **7.5** kW@slow extraction (SX) section, and **1.125** kW@fast extraction (FX) section.

• Activation control: Residual dose measurement

The level of activation of the components should be kept within the limits set for workers to perform hands-on maintenance. Should set the limits for each device **for the unscheduled and urgent repair-works for a malfunction of the device,** and it depends also on the number of workers and specialists, how many processes and how difficult to do it ,,,,,etc, in addition to **the daily exposure limit**, **0.5 mSv for men and 0.3 mSv for women in J-PARC. Residual dose measurement is required.**

Total dynamic range : >120dB

From residual doses: as low as $10 \mu Sv/h$ to control activation level.

To intense beam loss : **0.053 Gy/Cycle for 2kW beam power lost** uniformly in the **collimators** The dynamic range wider than **120 dB**.

• Bandwidth : Another fast type BLM detector under development

Turn-by-turn beam losses : 200 kHz. To study the **head-tail instability: 100 MHz** would be needed. Another type of detector is now testing.

How to improve dynamic range : dual detector system

Proportional Gas Chamber BLM : PBLM

- Manufacturer : Toshiba Electron Tubes & Devices
- •anode wire : φ50 μm, Pt
- •Inner tube : φ23 mm (inside), SUS304
- •Outer tube : φ47.8 mm (inside), SUS304
- •Length : 800 mm
- •Gas : Ar+CO₂ 1%
- •Gas pressure : 1.1 atm
- •Gas gain : 2E4 @ max. Bias=-2kV

Air Ionization chamber : AIC

- Cable type : 20D (Cu tube and corrugate tube, polyethylene ribbon insulator, Cu tape shield)
- •Gas : Air (not sealed)
- Gas pressure : Same as pressure in the tunnel
- •Gas gain : 1.0
- •Max. Bias : 500 V
- •length: 1m type (sAIC), ave. 84m type (longAIC)

 $I_{output} = 1 \times I_{initial}$

Different type of detectors can cover wide range of signal

New Detector setup

PBLM and sAIC installed at QM 848 mm from the beam line longAIC installed on the cable rack 3 m from the beam line

Number of detectors

- PBLM : 216 (at each QM) + special (on request)
- sAIC : 53 (only in straight section)
- longAIC : 19 (Cover whole MR tunnel)

New "isolation" amp and new ADC system

Collaboration with HIRAKU

Block diagram of the new data taking system

Comparisons between old and new system

- 216 PBLM (every QM) + 19 longAIC
- Front end analog-amp
 - Capacitance at input nodes : 10~30 nF
 - I/V Conv imp. : 100kΩ (Shunt R=10kΩ, Gain=10)
 - Bandwidth: DC 500~1.5kHz depending on cable length
 - Max. input current: 100 uA
 - WF signal and Integ. Charge signal (WF)
 - Analog comparators to make alarm signal for MPS system
- ADC: Insufficient performances!!
 - Use for integ. charge WF signal, no ADCs for fast WF signals
 - Only 100 times AD per cycle (2.48s cycle @FX, 6s cycle @SX)
 - ±20000 AD point
- Data handling
 - EPICS

- 216 PBLM+sAIC(only in straight section)+19longAIC
- Photo-coupler isolated Front end analog-amp: High I/V conv., and Fast!!
 - Capacitance at input nodes : 10~30 nF
 - I/V Conv imp. : 1MΩ (×10)
 - Bandwidth: DC 10kHz (\times 20 \sim 7)
 - Max. input current: 10 uA (1/10)
 - WF signal
- ADC: Low noise and low offset drift!!
 - 2 types of waveforms and 1 scaler output: 1MS/s, 1kS/s, integrated charge
 - 24 bit with sign, 16.5 ENOB for 1MS/s
 - Shot-by-shot offset subtraction
 - Digital comparators for MPS, output analog ports to MPS unit
- Data handling
 - EPICS

Signal rise time: Impulse response

Signals from 3 detectors : PBLM, sAIC, long AIC Collimator section : 460kW FX operation

Integrated charge plot : Initial charge, gas gain corrected: 460kW FX

Bias set for PBLM :

•Beam loss mode -> Inj. and Colli. section : -1.3kV (G=61), the others : -1.6kV (G=628)

• Residual dose mode -> all set as -2.0 kV (G=2E4)

2D loss map from PBLMs : 460kW FX

The key details of the beam losses: positions, timings, and intensities

Summary

- The new BLM system for the J-PARC MR has been operating successfully since last summer.
- Thanks to the high gas gain performance of the PBLM and the combined use of the sAIC, the system dynamic range is now wider than 160 dB.
- The present signal rise time of 17 μs is likely to be fast enough to ensure that the MPS system will dump the beam within 100 $\mu s.$
- The output signal of the longAIC was calibrated using the controlled beam losses at the Collimators and Arc A and Arc B.
- The beam power loss in the Injector and Collimator section was 450 W in the FX mode operation which outputs 460 kW beam power.
- To improve signal-to-noise ratio of the waveform data obtained, further studies are needed.
- A new OPI will start operation from this Oct. after this summer shut down
- We are now designing another fast BLM system that shows bandwidth of more than 200 kHz.