Keyword: SCADA
Paper Title Other Keywords Page
MOBR01 ROMULUSLib: An Autonomous, TCP/IP-Based, Multi-Architecture C Networking Library for DAQ and Control Applications radiation, controls, monitoring, electron 69
 
  • A. Yadav, H. Boukabache, K. Ceesay-Seitz, N. Gerber, D. Perrin
    CERN, Geneva, Switzerland
 
  The new generation of Radiation Monitoring electronics developed at CERN, called the CERN RadiatiOn Monitoring Electronics (CROME), is a Zynq-7000 SoC-based Data Acquisition and Control system that replaces the previous generation to offer a higher safety standard, flexible integration and parallel communication with devices installed throughout the CERN complex. A TCP/IP protocol based C networking library, ROMULUSlib, was developed that forms the interface between CROME and the SCADA supervision software through the ROMULUS protocol. ROMULUSlib encapsulates Real-Time and Historical data, parameters and acknowledgement data in TCP/IP frames that offers high reliability and flexibility, full-duplex communication with the CROME devices and supports multi-architecture development by utilization of the POSIX standard. ROMULUSlib is autonomous as it works as a standalone library that can support integration with supervision applications by addition or modification of parameters of the data frame. This paper discusses the ROMULUS protocol, the ROMULUS Data frame and the complete set of commands and parameters implemented in the ROMULUSlib for CROME supervision.  
slides icon Slides MOBR01 [4.040 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOBR01  
About • Received ※ 11 October 2021       Revised ※ 18 October 2021       Accepted ※ 21 December 2021       Issue date ※ 09 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV016 Design and Implement of Web Based SCADA System for HUST Field-Reversed Configuration Device controls, experiment, data-acquisition, framework 153
 
  • F.Y. Wu, Y.X. Jiang, W.S. Wang, X.H. Xie
    HUST, Wuhan, People’s Republic of China
  • S. Li, B. Rao, Y. Yang, M. Zhang, P.L. Zhang, W. Zheng
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  As a large complex fusion research device for stud-ying field reversed configuration (FRC) plasma, HUST FRC(HFRC) is composed of many subsystems. In order to coordinate all systems and ensure the correct, orderly and stable operation of the whole experimental device, it is very important to have a unified and powerful control system. HFRC SCADA(Supervisory Control And Data Ac-quisition) system has selected the in-house developed CFET’Control system Framework for Experimental Devices Toolkit’as the control framework, with ad-vantages of strong abstraction, simplified framework, transparent protocol and flexible extension due to Web technology.  
poster icon Poster MOPV016 [1.062 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV016  
About • Received ※ 09 October 2021       Revised ※ 16 October 2021       Accepted ※ 09 February 2022       Issue date ※ 23 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV017 CERN SCADA Systems 2020 Large Upgrade Campaign Retrospective controls, operation, software, interface 156
 
  • L.G. Goralczyk, A.F. Kostopoulos, B. Schofield, J-C. Tournier
    CERN, Geneva, Switzerland
 
  In this paper we report the experience from a large-scale upgrade campaign of SCADA control systems performed during the second LHC Long Shutdown at CERN. Such periodical upgrades are dictated by the ever evolving SCADA WinCC OA system and the CERN frameworks evolution used in those control systems. These upgrades concern: accelerator control systems, e.g. quench protection system, powering interlocks, magnet alignment; control systems devoted to accelerator facilities such as cryogenics, vacuum, gas… and other global technical infrastructure systems as well as the CERN electrical distribution system. Since there are more than 200 SCADA projects covering the CERN accelerator complex and technical infrastructure, any disruption requires careful coordination, planning and execution with process owners. Having gained experience from previous campaigns and reaching a new level of automation we were able to make visible improvements by shortening the required time and reducing the personnel required. Activities, lessons learned and further improvements are presented as well as a comprehensive statistical insight of the whole campaign.  
poster icon Poster MOPV017 [4.222 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV017  
About • Received ※ 09 October 2021       Revised ※ 14 October 2021       Accepted ※ 04 November 2021       Issue date ※ 18 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV045 Data-Centric Web Infrastructure for CERN Radiation and Environmental Protection Monitoring controls, radiation, real-time, framework 261
 
  • A. Ledeul, C.C. Chiriac, G. Segura, J. Sznajd, G. de la Cruz
    CERN, Meyrin, Switzerland
 
  Supervision, Control and Data Acquisition (SCADA) systems generate large amounts of data over time. Analyzing collected data is essential to discover useful information, prevent failures, and generate reports. Facilitating access to data is of utmost importance to exploit the information generated by SCADA systems. CERN’s occupational Health & Safety and Environmental protection (HSE) Unit operates a web infrastructure allowing users of the Radiation and Environment Monitoring Unified Supervision (REMUS) to visualize and extract near-real-time and historical data from desktop and mobile devices. This application, REMUS Web, collects and combines data from multiple sources and presents it to the users in a format suitable for analysis. The web application and the SCADA system can operate independently thanks to a data-centric, loosely coupled architecture. They are connected through common data sources such as the open-source streaming platform Apache Kafka and Oracle Rdb. This paper describes the benefits of providing a feature-rich web application as a complement to control systems. Moreover, it details the underlying architecture of the solution and its capabilities.  
poster icon Poster MOPV045 [1.253 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV045  
About • Received ※ 07 October 2021       Accepted ※ 20 November 2021       Issue date ※ 02 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV005 OPC-UA Data Acquisition for the C2MON Framework monitoring, controls, data-acquisition, software 376
 
  • E. Stockinger
    Aalto University, School of Science and Technology, Aalto, Finland
  • M. Bräger, B. Copy, B. Farnham, M. Ludwig, B. Schofield
    CERN, Geneva, Switzerland
 
  The CERN Control and Monitoring Framework(C2MON) is a monitoring platform developed at CERN and since 2016 made available under an LGPL3 open source license. It stands at the heart of the CERN Technical Infrastructure Monitoring (TIM) that supervises the correct functioning of CERN’s technical and safety infrastructure. This diverse technological infrastructure requires a variety of industrial communication protocols. OPC UA [2], an open and platform-independent architecture, can be leveraged as an integration protocol for a large number of existing data sources, and represents a welcome alternative to proprietary protocols. With the increasing relevance of the open communication standard OPC UA in the world of industrial control, adding OPC UA data acquisition capabilities to C2MON provides an opportunity to accommodate modern and industry-standard compatible use cases. This paper describes the design and development process of the C2MON OPC UA data acquisition module, the requirements it fulfills, as well as the opportunities for innovation it yields in the context of industrial controls at CERN.  
poster icon Poster TUPV005 [0.548 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV005  
About • Received ※ 07 October 2021       Revised ※ 23 October 2021       Accepted ※ 20 November 2021       Issue date ※ 13 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV010 Integration of OPC UA at ELBE controls, LLRF, PLC, interface 400
 
  • K. Zenker, M. Kuntzsch, R. Steinbrück
    HZDR, Dresden, Germany
 
  The Electron Linac for beams with high Brilliance and low Emittance (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is in operation since 2001. It is operated using the SCADA system WinCC by Siemens. The majority of ELBE systems is connected to WinCC via industrial Ethernet and proprietary S7 communication. However, in recent years new subsystems had to be integrated into the existing infrastructure, which do not provide S7 communication interfaces. Instead, OPC UA has been chosen for system integration. We will show how we use OPC UA as a common communication layer between industrial and scientific instruments as well as proprietary and open source control system software. For example, OPC UA support has been implemented for the ChimeraTK framework developed at DESY. ChimeraTK is used at ELBE e.g. for integrating MicroTCA.4 based subsystems like the digital LLRF system. Furthermore, we are developing a machine data interface for ELBE users. In combination with a certification authority, which hands out user certificates for data access, external users can gain read and write access to different ELBE subsystem data provided by a single OPC UA server.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV010  
About • Received ※ 08 October 2021       Accepted ※ 20 November 2021       Issue date ※ 15 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV035 Continuous Integration for PLC-based Control System Development PLC, controls, interface, hardware 478
 
  • B. Schofield, E. Blanco Viñuela, J.H.P.D.C. Borrego
    CERN, Geneva, Switzerland
 
  Continuous Integration and Continuous Deployment (CI/CD) is a software engineering methodology which emphasises frequent, small changes committed to a version control system, which are verified by a suite of automatic tests, and which may be deployed to different environments. While CI/CD is well established in software engineering, it is not yet widely used in the development of industrial controls systems. However, the advantages of using CI/CD for such systems are clear. In this paper we describe a complete CI/CD pipeline able to automatically build Siemens PLC projects from sources, download the program to a PLC, and run a sequence of tests which interact with the PLC via both a Simulation Unit Profibus simulator and an OPC UA interface provided by Simatic NET. To achieve this, a gRPC service wrapping the Simatic API was used to provide an interface to the PLC project from the pipeline. In addition, a Python wrapper was created for the Simulation Unit API, as well as for the OPC UA interface, which allowed the test suite to be implemented in Python. A particle accelerator interlock system based on Siemens S7-300 PLCs has been taken as a use case to demonstrate the concept.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV035  
About • Received ※ 08 October 2021       Accepted ※ 20 November 2021       Issue date ※ 25 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPV049 Virtualisation and Software Appliances as Means for Deployment of SCADA in Isolated Systems controls, software, operation, network 985
 
  • P. Golonka, L. Davoine, M.Z. Zimny, L. Zwalinski
    CERN, Meyrin, Switzerland
 
  The paper discusses the use of virtualisation as a way to deliver a complete pre-configured SCADA (Supervisory Control And Data Acquisition) application as a software appliance to ease its deployment and maintenance. For the off-premise control systems, it allows for deployment to be performed by the local IT servicing teams with no particular control-specific knowledge, providing a "turn-key" solution. The virtualisation of a complete desktop allows to deliver and reuse the existing feature-rich Human-Machine Interface experience for local operation; it also resolves the issues of hardware and software compatibilities in the deployment sites. The approach presented here was employed to provide replicas of the "LUCASZ" cooling system to collaborating laboratories, where the on-site knowledge of underlying technologies was not available and required to encapsulate the controls as a "black-box" so that for users, the system is operational soon after power is applied. The approach is generally applicable for international collaborations where control systems are contributed and need to be maintained by remote teams  
poster icon Poster THPV049 [2.954 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-THPV049  
About • Received ※ 08 October 2021       Revised ※ 30 November 2021       Accepted ※ 19 February 2022       Issue date ※ 25 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRAL03 CERN Cryogenic Controls Today and Tomorrow controls, cryogenics, PLC, radiation 997
 
  • M. Pezzetti, Ph. Gayet
    CERN, Geneva, Switzerland
 
  The CERN cryogenic facilities demand a versatile, distributed, homogeneous and highly reliable control system. For this purpose, CERN conceived and developed several frameworks (JCOP, UNICOS, FESA, CMW), based on current industrial technologies and COTS equipment, such as PC, PLC and SCADA systems complying with the requested constraints. The cryogenic control system nowadays uses these frameworks and allows the joint development of supervision and control layers by defining a common structure for specifications and code documentation. Such a system is capable of sharing control variable from all accelerator apparatus. The first implementation of this control architecture started in 2000 for the Large Hadron Collider (LHC). Since then CERN continued developing the hardware and software components of the cryogenic control system, based on the exploitation of the experience gained. These developments are always aimed to increase the safety and to improve the performance. The final part will present the evolution of the cryogenic control toward an integrated control system SOA based CERN using the Reference Architectural Model Industrie 4.0 (RAMI 4.0).  
slides icon Slides FRAL03 [6.597 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-FRAL03  
About • Received ※ 10 October 2021       Revised ※ 25 October 2021       Accepted ※ 26 November 2021       Issue date ※ 01 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)