
CONTINUOUS INTEGRATION FOR PLC-BASED CONTROL SYSTEM
DEVELOPMENT

B. Schofield∗, J. Borrego, E. Blanco, CERN, Geneva, Switzerland

Abstract
Continuous Integration/Continuous Deployment (CI/CD)

is a software engineering methodology which emphasises
frequent, small changes committed to a version control sys-
tem, which are verified by a suite of automatic tests, and
which may be deployed to different environments. While
CI/CD is well established in software engineering, it is
not yet widely used in the development of industrial con-
trols systems. However, the advantages of using CI/CD for
such systems are clear. In this paper we describe a com-
plete CI/CD pipeline able to automatically build Siemens
Simatic Programmable Logic Controller (PLC) projects
from source files, download the program to a PLC, and run
a sequence of tests which interact with the PLC via both a
Simulation Unit Profibus simulator and an OPC Unified Ar-
chitecture (OPC UA) interface provided by Simatic NET.
To achieve this, a Google Remote Procedure Call (gRPC)
service wrapping the Simatic Application Programming
Interface (API) was used to provide an interface for interact-
ing with the PLC project from the pipeline. In addition, a
Python wrapper was created for the Simulation Unit API,
as well as for the OPC UA interface, which allowed the test
suite to be implemented in Python. A particle accelerator
interlock system based on Siemens S7-300 PLCs has been
taken as a use case to demonstrate the concept.

INTRODUCTION
In software engineering, Continuous Integration (CI)

refers to a method of development in which changes are
regularly incorporated into a central repository. It is very
often associated with the presence of build and test automa-
tion, in which code is automatically compiled, and a set of
tests run. The objective of the methodology is to provide
early detection of bugs introduced by code changes, and
to simplify workflows in the case where there are several
developers working on a single code base (the alternative
is to perform periodic merges of the individual developers’
branches, which may be very complex if many changes have
been made).

Continuous Deployment (CD) is perhaps less well defined,
and entails at least the automatic release of some artefact
of the automated build process in the CI stage. It may also
involve the fully automatic deployment of the artefact in a
production environment.

Software for PLC-based control systems traditionally does
not follow CI/CD principles, for a number of reasons. Gen-
erally, proprietary engineering tools are used as the develop-
ment environment, in which code is written, compiled and
downloaded to the PLC.
∗ Corresponding Author. E-mail: brad.schofield@cern.ch

In general there is no support for external version control
systems to be used for the source code, at least as far as
CERN’s standard PLC suppliers are concerned (Siemens,
Schneider). Instead, often the full project is included in
version control as the collection of files and data used by
the engineering tools, provided one is using version con-
trol at all. Tracking code changes is difficult, and merging
branches is effectively impossible with such a workflow. Au-
tomation of the building of PLC projects is not trivial, as
not all engineering tools provide easy access from scripting
languages to these functionalities. Finally, automated testing
proves to be cumbersome for a number of reasons that will
be elaborated in later sections.

The question addressed in this article is whether it is tech-
nically feasible to implement a CI/CD workflow for PLC-
based controls development, and if so, whether such a work-
flow is practicable and useful in a real-world application.

In order to address the first point, set of tools will be in-
troduced which aim to overcome the obstacles preventing
the adoption of CI/CD for PLC-based control system de-
velopment. Tools for automation of the build process are
proposed, with the focus on Siemens Simatic applications,
although tooling for other engineering tools has also been
developed. An approach for implementing automated test-
ing of the complete PLC program is described, consisting
of an interface to a fieldbus simulator, as well as an OPC
UA interface to the PLC and Supervisory Control And Data
Acquisition (SCADA) layers of the control system.

To demonstrate these tools, and illustrate their potential,
a use case consisting of an interlock system for the Large
Hadron Collider (LHC) is presented. Major updates and
refactoring of this control system have been enabled by em-
ploying the CI/CD workflow presented in this article.

The article begins with addressing the question of the
tooling required to automate the building of PLC projects.
After that, automatic testing is addressed. Finally, the use
case is explained and details of the proposed workflow are
given within the context of that project.

TOOLS FOR AUTOMATING PLC
PROJECT BUILDING

Intended Workflow
In order to implement CI/CD for PLC-based applications,

it is necessary to adopt a similar underlying development
workflow to that used elsewhere in software engineering.
Fundamentally, this means adopting the use of version con-
trol for all source code. The source code is then compiled
to produce some form of output, for example executable
programs or libraries, for one or more target systems. These
outputs in themselves do not need to be included in version

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV035

TUPV035C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

478 Device Control and Integrating Diverse Systems



control, as they can simply be recreated from a specific state
of the versioned source code. The outputs are often referred
to as artefacts. The CI/CD approach is to automate this pro-
cess of creation (and subsequent deployment) of artefacts.

In the majority of mainstream programming languages,
the source code simply consists of text files. The most widely
used version control systems are therefore also based on the
use of text files. If it is intended for the complete source
of a PLC program to be stored in a version control system,
this introduces some restrictions. Of the IEC-61131-3 lan-
guages, only the languages which can be represented in text,
namely Structured Text (ST) and Instruction List (IL) are
suited to this approach. However, the requirement to use
non text-based PLC languages does not preclude the use of
the proposed approach; it may be the case that a part of the
code base is implemented in text-based languages, and other
parts in non text-based languages, of which the former are
tracked in an external version control tool and the latter kept
in the PLC engineering tool.

PLC Engineering Tools
As previously mentioned, Programmable Logic Con-

troller (PLC) engineering must be performed using the pro-
prietary engineering tools supplied by PLC vendors. The
interface for such tools is typically a Graphical User In-
terface (GUI), in which importation of code from external
sources, code editing, compilation, configuration of the tar-
get, and downloading of the program are performed. In
general, these tools do not have good support for version
control systems, meaning that it is difficult to maintain con-
sistency between source code that is maintained in version
control, and the resulting compiled version of a project. This
is in essence the core problem being treated in this paper.
While it is possible to use dedicated version control tools
for PLC projects such as versiondog 1, they lack some
of the more advanced features of version control systems
employed in standard software development like git. They
also implicitly track all changes to the compiled project,
whereas the desired workflow outlined here aims at keeping
only the text-based sources in version control, excluding
any derived binaries and other non-essential data files. In
order to achieve the desired workflow, it is necessary to au-
tomate tasks ranging from importation of external sources,
to compilation and ultimately downloading of the project
to a PLC. If this can be achieved, then the CI/CD workflow
will be able to guarantee consistency between source files in
the repository and a program running on a PLC, something
which is currently not possible with existing tools.

In this work we focus on the engineering tools for Siemens
S7-300 PLCs, since these are present in the system at hand.
These PLC projects are developed using Simatic Step 7,
which exposes a C#/Visual Basic API. We developed a C# li-
brary which allows us to import source files, build the project
and download it to either a test or production PLC. We then
designed a simple gRPC service, allowing our C# server to

1 https://auvesy.com/en/versiondog, as of October 21, 2021

fulfil requests and interact directly with the Step7 library,
which can be launched from remote clients, implemented in
whichever language is convenient. We use a Python client
due to its simplicity of use and to match the environment
for running the integration test suite. Figure 1 shows the
client/server architecture for the proposed S7 gRPC service.

S7 gRPC Service Client (Python)Server (C#)

S7Lib Build/Deploy Script

Siemens Simatic API

S7 Server VM CI/CD Runner

Figure 1: Architecture of the Simatic build tools.

The S7 gRPC service exposes several methods, namely:

• CreateProject to create an empty Simatic project
given the project name and destination path;

• ImportSource to import a source file into project;

• ImportSymbols to import a symbol table file into
project;

• CompileSources to build target sources into blocks;

• CompileAllStations to build the hardware configu-
ration for each station in the Simatic project;

• StartProgram to start/restart a specific program on
the target CPU;

• StopsProgram to stop a specific program on the target
CPU;

• DownloadProgramBlocks to download a specific pro-
gram to target CPU.

Finally, we have also developed similar tooling to support
newer Siemens S7-1500 and Schneider CPUs, although these
are not in the scope of this article.

AUTOMATED TESTING FOR PLC
PROGRAMS

With automated build and deployment tools in place,
the last remaining piece required to implement a complete
CI/CD workflow is the automated test suite. Automated test-
ing of PLC programs is challenging for several reasons. For
the majority of modern programming languages, there are
numerous unit testing frameworks available, which make
the implementation of unit tests almost trivially simple. In
addition, it is generally not difficult to create a build con-
figuration which will create test executables which can be
run locally, for example on the developer’s machine. This is

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV035

Device Control and Integrating Diverse Systems

TUPV035

479

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



however not the case for PLC programming languages. In
order to implement true unit tests for PLC code, frameworks
specific to a PLC type would have to be implemented. This
topic is explored in [1], in which a unit testing framework
for Siemens PLCs is developed. For integration testing, the
problem is further complicated by the difficulty of ‘mock-
ing’ the necessary interfaces (for example fieldbuses and
supervision systems). Regarding the target on which the test
code shall be run, in the case of PLCs this must be either
a physical PLC CPU, or a simulator. While the simulator
approach may be attractive, currently not all PLC simulators
support the functionality required to implement complete
test suites.

The approach to PLC program testing proposed here is
to generate a PLC program which is either identical, or
very close to the final program required in production. This
program is then deployed to a physical PLC. The test suite
is then implemented externally, and utilises a number of
interfaces to interact with the PLC in order to run the tests.
The interfaces to the PLC can be summarised as acting
on three levels, namely the input-output or fieldbus level,
the PLC program level, and the supervision level. These
interfaces will be described in detail in the next sections,
before describing how they can be combined into a single
test suite.

In software development there’s a clear distinction be-
tween unit testing, integration testing and system testing.
Unit tests focus on verifying the correctness of individual
functions or modules in isolation. Integration tests aim at
ensuring the module’s interface is correct and it behaves
as expected when interacting with other modules. Finally,
system testing verifies that a completely integrated system
fulfils its requirements. Our proposal cannot be said to con-
sist of unit tests, at least as far as the PLC source code is
concerned. Instead we introduce a set of tests which verify
that the control system fulfils its task accordingly, which is
more strongly aligned with system testing. Even though we
use several communication interfaces and thereby implicitly
test them, they are not the focus of the test, so they cannot
be considered integration tests. Nevertheless, we still mock
the PLC inputs and evaluate outputs at both the PLC and
SCADA layers.

Fieldbus Simulators
A PLC application will almost invariably need to interact

with the physical world via sensors and actuators. The input-
output (IO) hardware required to do this may be installed
locally to the PLC CPU, but is more generally installed in
a distributed manner, and connected with the PLC via a
fieldbus. The fact that this interface is standardised can be
exploited for testing purposes, if simulators for such field-
buses are available. In this article, the focus is on Siemens
PLCs, and therefore Profibus and Profinet fieldbus simula-
tors will be taken as examples. Siemens provides hardware
which allows the simulation of arbitrary hardware configura-
tions for both Profinet and Profibus. The units are controlled
via an Ethernet interface, and a C API is available. For the

purposes of automatic testing, such a simulator can be con-
nected to a test PLC, and a CI/CD pipeline could be used
to configure the simulator (by loading a specific hardware
configuration), and control IO values, both via the API. In
order to more easily access the functionality of the simula-
tion unit from the automated build and test suite, a Python
wrapper py-simulation-unit was created.

PLC Interaction via OPC UA
While the fieldbus simulator provides a way to mock field

level input to the PLC, from the point of view of writing tests
it may be valuable to access the internal state of the PLC
program. This is fairly straightforward to achieve provided
the target PLC can expose tagged variables in an OPC UA
server. In the case of Siemens PLC, Siemens Simatic NET
software provides such an OPC UA server, which runs in a
separate workstation. Newer generations of PLCs also have
onboard OPC UA servers, further simplifying the setup.

In [2], OPC UA was used as the exclusive interface for
testing PLC applications. This was possible because the
applications under test were all created with the UNICOS
framework [3], the structure of which provides a simple way
to ‘override’ the hardware IO interface with values written
over OPC UA. This effectively means you can mock the IO
at the PLC program level. Depending on the way in which
an application is written, it may not always be possible to
do this, and IO simulation may be necessary.

In this work, the OPC UA client API from the open source
LGPL Pure Python OPC UA2 package is used.

Supervision Systems
A PLC-based control system most often interacts with a

SCADA system, in which operators can observe the status of
the system, and send commands to the PLC. In certain cases
there may be additional logic implemented in the SCADA
system, which provide further inputs to the PLC. Rather
than mocking the SCADA interface (which in the use case
presented in this article consists of Siemens S7 communi-
cation with a CERN-specific protocol built on it), it was
decided to instantiate a SCADA system specifically for the
test setup, and to interact with it via OPC Unified Archi-
tecture (OPC UA). This interaction allows the test suite to
‘force’ operator actions and logic outputs to the PLC, and
thus provides a very realistic test setup. An added bene-
fit is that the test suite can be used for manual validation
of the graphical features of the SCADA system, as shown
in Fig. 2. Effectively, by visual inspection of the SCADA
faceplate it is possible to monitor the automated test execu-
tion in the lab setup. The SCADA system used here is built
with WinCC OA, using features from CERN’s UNICOS
framework [3].

2 https://github.com/FreeOpcUa/python-opcua, as of October 21,
2021

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV035

TUPV035C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

480 Device Control and Integrating Diverse Systems



Figure 2: Part of the SCADA faceplate for one Powering
Interlock Controller PLC. The automated test suite can be
used to drive inputs to manually validate the supervision
layer.

USE CASE: LHC POWERING INTERLOCK
CONTROLLER

An example of the utilisation of the proposed CI/CD work-
flow can be found in the Powering Interlock Controller (PIC)
of the LHC. This system controls the powering of the super-
conducting magnets of the LHC, and consists of 36 Siemens
S7-319 PLCs, physically distributed around the 27 km cir-
cumference of the LHC as shown in Fig. 3. Each PLC is
responsible for managing the interlocks for a certain number
of electrical circuits powering the magnets. Depending on
the types of magnets being controlled, the PIC is required
to monitor different types of signals, and perform different
interlock actions. All 36 PLCs utilize a common generic
code base, which is parameterized in each PLC using source
files which determine input-output mappings and circuit
types [4].

AR1
LR1 XR1 XL1 LL1 AL1

AR8

AR7

AL7

AR6

MR6

ML6

AL6

AR5

MR8

XR8

XL8

ML8

AL8

LR5
XR5

XL5
LL5AL5

AR4
MR4

ML4

AL4

AR3

AL3

AR2

MR2

XR2

XL2

ML2

AL2

Point 4
CMS

Point 5

Point 6

LHCb

Point 8

ATLAS

Point 1

ALICE

Point 2
Point 7

Point 3

Figure 3: Layout of the LHC showing PIC PLC locations.
Each PLC is shown as a green box with the corresponding
name.

Legacy Workflow
Prior to implementing a CI/CD workflow, the method

used to update the generic code was to edit it in each
Simatic project. This was time-consuming and error
prone. Deployed versions of the PLC projects were kept
in versiondog, which enabled tracking of changes to each
individual Simatic project. Testing was performed manu-
ally with a hardware-based lab setup. Consistency between
the code depoloyed on the lab setup, and that deployed in
the production system had to be handled by the developer.

CI/CD Workflow
The starting point of the CI/CD workflow was the creation

of a GitLab repository containing a set of sources (ST and
IL files) for both the generic code (the same for all PLCs)
and the configuration code (different files for each PLC). A
set of ‘base’ Simatic projects, containing the hardware con-
figurations of each PLC, are also included in the repository.
It should be noted that these projects are only used as inputs
to the workflow; that is, the resulting complete Simatic
projects are not versioned in git.

Lab testing workflow The automated testing is per-
formed in the lab, using an identical PLC to those used in
production, connected to a Siemens Profibus Simulation
Unit. An additional Simatic project containing the config-
uration of this PLC is present in the repository; the hardware
configuration of which is the basis of the Simulation Unit
configuration.

The build stage of the CI/CD workflow uses a Python
build script to import the generic sources as well as the
specific configuration sources of the configuration to be
tested. The resulting program is compiled. Finally, the
complete PLC program is downloaded to the lab PLC. In
order to update the OPC UA server used for the testing, the
script also downloads to the OPC UA station.

With the build stage complete, the test stage can begin.
This simply involves calling pytest on the complete test
suite. Test fixtures manage the connections to the Simulation
Unit, as well as the OPC UA servers for both the PLC and
the SCADA. An example of a pytest fixture is as follows
(for the PLC client):

@pytest.fixture
def plc_client() -> Client:

"""Returns an OPC UA client connected to the PLC"""
client = Client(CLIENT_PLC_URL)
client.connect()
yield client
client.disconnect()

Listing 1: Fixture for OPC UA PLC Client

The SCADA client fixture follows the same pattern. The
simulation unit fixture (called simba in this use case) is
slightly more complex as the hardware configuration is
loaded.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV035

Device Control and Integrating Diverse Systems

TUPV035

481

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



A specific test may use any combination of these fixtures,
depending on what needs to be accessed in the test. The
following is a very simple test to verify the magnet quench
detection status for the main dipole magnet circuit:

def test_quench_abort_status_rb(plc_client, simba):
"""Main Dipole Quench Status test"""
plc = plc_client.get_root()
status_abort = plc.get_child("7:A_A_1_ST_ABORT")
quench_status =

plc.get_child(['7:1_Instance1_Circuit1',
'7:Quench_Status'])

↪↪
simba.write_io_bin('S000I4.1', 1)
wait()
assert status_abort.get_value() is True
assert quench_status.get_value() is False

simba.write_io_bin('S000I4.1', 0)
wait()
assert status_abort.get_value() is False
assert quench_status.get_value() is True

Listing 2: Example Test for the Power Interlock Controller
System

It can be seen that the inputs are manipulated using their
hardware addresses directly, via the simba fixture. If de-
sired, an abstraction layer based on the signal list of a specific
project could be implemented to simplify the reading and
writing of the tests. The test assertion is based on accessing
the instance data block of a specific function block represent-
ing a state machine corresponding to the main dipole circuit,
and verifying that a particular property is correctly set. This
illustrates the usefulness of the OPC UA connection to the
PLC, as this information may not necessarily be accessible
via other interfaces such as the SCADA.

Naturally, the more complete functionality tests are more
complex than the examples reproduced here, but all tests
follow the same principles. All three interfaces are used
to drive the program to the desired initial state, and then
test inputs can be given, representing either field or operator
input. The interface to the internal PLC data allows many
‘fine-grained’ assertions to be made, such that if a test fails,
it is easy to identify the location in the code that caused the
failure.

LHC build workflow With the tests passing, it is now
possible to build all 36 PLC projects ready for deployment
to the LHC. For this build stage, the build script is param-
eterized by the different subsectors of the LHC, allowing
some control over which PLC projects are built. This can be
useful as interventions are typically performed on one sector
of the LHC at a time, and the complete build pipeline for all
36 projects takes approximately 2 hours to run. Currently,
automatic deployment is not performed for the production
PLCs although there is no technical barrier for this. Instead,
the artefacts of the build pipeline (i.e. the Simatic projects)
are added as a new version to versiondog and downloaded

manually. The complete conceptual workflow is illustrated
in Fig. 4.

1 Simatic Project

Lab PLC Loaded

Test Report

36 Simatic Projects

Build LHC

versiondog

Build Lab

Deploy Lab

Test

Figure 4: The conceptual CI/CD workflow. Labels by the
arrows describe the artefacts produced by the preceding
stage.

Tangible benefits of the CI/CD workflow In terms
of the time saved for simply deploying a code change, the
current workflow (with manual download) is estimated to
reduce workload by approximately an order of magnitude.
Manually updating each project would take at least a day,
whereas simply downloading the resultant artefacts can be
done in approximately one hour. With automated deploy-
ment, no developer input would be required after committing
the changes to the repository and triggering the pipeline.

Naturally, the development time saved by having access
to a full automated test suite is not as easily estimated, and
must also be offset by the time taken to develop and maintain
the test suite itself as well as the Continuous Integration/Con-
tinuous Deployment (CI/CD) infrastructure. Nevertheless,
in the scope of this use case it has been clear that the CI/CD
workflow has greatly facilitated development of new fea-
tures, the refactoring of the code, as well as identification
and resolution of bugs.

CONCLUSION
In this article a complete CI/CD workflow for PLC appli-

cation development is proposed, along with a set of tools
which enable all of the necessary stages of such a workflow.
In summary, these tools are:

1. A gRPC service enabling scripting of many operations
needed during PLC project engineering, including im-
portation of sources, compilation, and download;

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV035

TUPV035C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

482 Device Control and Integrating Diverse Systems



2. A Python wrapper for the Siemens Simulation Unit API,
allowing configuration and manipulation of simulated
IO from Python;

3. An example of an automated test suite, implemented in
Python and taking advantage of existing testing pack-
ages (pytest) as well as an open source OPC UA pack-
age to interface with the PLC and SCADA.

The complete CI/CD workflow has been illustrated using
the Powering Interlock Control system of the LHC.

Future Work
Currently, our test suite still refers to each simulated

Profibus I/O channel by a tag name defined in the Simu-
lation Unit project. A simple yet effective improvement
would be to create an additional shallow abstraction layer
that maps a meaningful device field to each I/O tag name.
This would considerably improve the test readability.

Additionally, it seems feasible to automatically upload the
PLC project built by the CI pipeline directly to versiondog,
preserving a connection to a tagged commit in version con-
trol. This would effectively give us the best of both worlds:
being able to quickly deploy to a running PLC while know-
ing exactly which source code is responsible for that specific
version of the program.

Our current proposal still relies on manually creating
base projects which include the hardware description. The
need for these could be eliminated by just creating an empty
project, automatically generating the hardware configuration
and importing it as part of the CI/CD workflow.

Finally, one can think of how we can effectively imple-
ment unit testing at the PLC source code level by leveraging
PLC simulators, namely with support for cycle-by-cycle
execution, as is explored in [1].

REFERENCES
[1] G. Sallai, E. B. Viñuela, and D. Darvas, “Testing Solutions for

Siemens PLCs Programs Based on PLCSIM Advanced,” in
Proc. ICALEPCS’19, (New York, NY, USA), ser. International
Conference on Accelerator and Large Experimental Physics
Control Systems, JACoW Publishing, Geneva, Switzerland,
Aug. 2020, pp. 1107–1110, isbn: 978-3-95450-209-7. doi:
10.18429/JACoW-ICALEPCS2019-WEPHA018. https://
jacow.org/icalepcs2019/papers/wepha018.pdf

[2] B. Schofield, E. B. Viñuela, and J. Borrego, “Continu-
ous Integration for PLC-based Control Systems,” in Proc.
ICALEPCS’19, (New York, NY, USA), ser. International
Conference on Accelerator and Large Experimental Physics
Control Systems, JACoW Publishing, Geneva, Switzerland,
Aug. 2020, pp. 1527–1531, isbn: 978-3-95450-209-7. doi:
10.18429/JACoW-ICALEPCS2019-WESH4003. https://
jacow.org/icalepcs2019/papers/wesh4003.pdf

[3] P. Gayet, R. Barillere, et al., “UNICOS a framework to build
industry-like control systems, Principles and Methodology,” in
Proc. 10th Int. Conf. on Accelerator and Large Experimental
Control Systems (ICALEPCS’05), Geneva, Switzerland, 2005.

[4] M. Zerlauth, C. Dehavay, B. Puccio, R. Schmidt, and E.
Veyrunes, “From the LHC reference database to the power-
ing interlock system,” in 9th International Conference on Ac-
celerator and Large Experimental Physics Control Systems
(ICALEPCS 2003), Oct. 2003, pp. 395–397.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV035

Device Control and Integrating Diverse Systems

TUPV035

483

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


