
ROMULUSlib: AN AUTONOMOUS, TCP/IP-BASED,
MULTI-ARCHITECTURE C NETWORKING LIBRARY FOR DAQ AND

CONTROL APPLICATIONS
A. Yadav, H. Boukabache∗, N. Gerber† , K. Ceesay-Seitz, D. Perrin

European Organization for Nuclear Research (CERN), Geneva, Switzerland

Abstract
The new generation of Radiation Monitoring electronics

developed at CERN, called the CERN RadiatiOn Monitor-
ing Electronics (CROME), is a Zynq-7000 SoC-based Data
Acquisition and Control system that replaces the previous
generation to offer a higher safety standard, flexible inte-
gration and parallel communication with devices installed
throughout the CERN complex. A TCP/IP protocol based
C networking library, ROMULUSlib, was developed that
forms the interface between CROME and the SCADA super-
vision software through the ROMULUS protocol. ROMU-
LUSlib encapsulates Real-Time and Historical data, parame-
ters and acknowledgement data in TCP/IP frames that offers
high reliability and flexibility, full-duplex communication
with the CROME devices and supports multi-architecture
development by utilization of the POSIX standard. ROMU-
LUSlib is autonomous as it works as a standalone library
that can support integration with supervision applications
by addition or modification of parameters of the data frame.
This paper discusses the ROMULUS protocol, the ROMU-
LUS Data frame and the complete set of commands and
parameters implemented in the ROMULUSlib for CROME
supervision.

INTRODUCTION
The Occupational Health & Safety and Environmental

Protection (HSE) at CERN obliges to the protection of
CERN personnel and the public from any unjustified ex-
posure to ionising radiation. The radiation protection group
(RP) at HSE has the mandate to monitor the radiological
impact of CERN’s accelerators and installations by active
monitoring and logging of radiation levels at different exper-
imental sites spanning the CERN complex. To facilitate this,
the new generation of CERN RadiatiOn Monitoring Elec-
tronics, called CROME [1], was developed by the CROME
team of the Instrumentation and Logistics (IL) section within
the RP group and is responsible for the design, development,
installation and maintenance of these specialised radiation
monitoring systems. Starting from Long Shutdown 2 (LS2)
of the Large Hadron Collider (LHC) in 2019, the older gen-
eration of radiation monitors, namely The Area Controller
(ARCON) is being replaced by the new CROME devices
and will be operational for the Run 3 of the LHC in February
2022. The consolidation of the current generation of RA-
diation Monitoring System for the Environment and Safety

∗ Corresponding author Dr. H.B. (hamza.boukabache@cern.ch)† N.G. is a former CERN Fellow. He is currently at CSEM, Neuchâtel (CH)

(RAMSES) monitors by CROME is planned to be completed
by the Long Shutdown 3 (LS3) in late 2027.

The CROME devices consist of the autonomous Moni-
toring Units, Alarm Units, a Junction Box and an Uninter-
ruptible Power Supply. [2–4] The autonomous monitoring
units, called the CROME Measuring and Processing Units
(CMPUs), consist of an ionization chamber and an electronic
readout system. The CMPU can be either a wall-mounted
system where the CMPU is directly attached to the ioniza-
tion chamber or it can be a rack-mounted system where the
CMPU is connected to the ionization chamber with a special-
ized cable. The rack-mounted system is used for monitoring
areas with high radiation levels that can damage the readout
electronics. In this case, a custom plastic ionization chamber
with graphite coating is placed directly into that area with
high radiation levels, whereas the readout electronics are
placed in an area of lower radiation for their protection. The
ionization chamber detects ionizing radiation and converts
it to a readable current value. A read-out chip measures
this current, which can be within 2 fA to 1 μA. Because
these currents can be so low, a specialized cable SPA6 was
developed by the RP team at CERN for the rack-mounted
system. The SPA6 cable is used for Signal and High Voltage
lines up to one kilometer distance. The CMPU’s front-end
readout interface transmits the current value to the FPGA
programmable logic (PL) of a Zync-7000-based System-on-
Chip (SoC), which uses it to calculate the real-time radia-
tion dose rate as well as the total radiation dose received in
the monitored area at the ionization chamber location. All
safety-critical decisions and actions such as measurement,
dose rate calculation, temperature compensation, alarm gen-
eration and interlock generation are performed by the PL.
This is done to ensure system reliability by implementing
operations within a Finite-State Machine. A complex pro-
grammable logic device (CPLD)-based watchdog works in
tandem with the SoC. It monitors the PL state machine to
ensure correct dose rate calculations and overall function-
ality. It is allowed to reset/reboot the SoC when it is in an
undefined state. At the detection of dangerous conditions,
e.g. if the radiation dose or dose rate exceeds a defined limit,
the CMPU automatically generates local and remote alarms
and a beam interlock signal that stops the concerned acceler-
ator or machine. Parameters like dose and dose rate limits,
current-to-radiation conversion factors, and many more can
be configured remotely by the authorized members of the
radiation protection group. A schematic of the CROME
devices and it’s part is shown in Fig. 1.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBR01

Device Control and Integrating Diverse Systems

MOBR01

69

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 1: CROME Radiation Monitor components and basic
configuration.

The radiation monitoring CROME devices at CERN are
required to fulfil safety requirement in accordance with the
IEC 60532 standard for radiation protection instrumenta-
tion. This is in compliance to the task of interlock triggering
of machines in case of high radiation levels. Therefore,
CROME devices have been developed to satisfy Safety In-
tegrity Level 2 (SIL 2), as defined in the IEC 61508 stan-
dard in accordance with the IEC 60532 for functional safety
of Electrical/Electronic/Programmable Electronic Safety-
related Systems. We have therefore followed a process and
implemented measures to reduce the risk of dangerous fail-
ures during the development and operation while following
stringent methodology to avoid both random and systematic
faults for both firmware [5] and hardware [6].

The CROME hardware deployed throughout the CERN
complex communicates with a SCADA supervision system,
called Radiation and Environment Monitoring Unified Su-
pervision (REMUS) [7, 8]. In order to facilitate reliable
connectivity and logging capabilities, the development of a
dedicated TCP/IP-based C networking library, ROMULUS-
lib was initiated by the CROME team. ROMULUSlib is the
communication interface between CROME and REMUS. It
sits in the userspace of a POSIX compliant OS and allows
multi-user full-duplex communication with CROME devices
through REMUS and/or an ‘expert application’ connected
to the devices through the network via Ethernet connection.
ROMULUSlib compiles on multiple architectures and at
present, ROMULUSlib has been built and tested success-
fully with gcc 4.8.5 on x84_64, arm32 and with Apple clang
version 11.0.3 on x86_64 Darwin MacOS Kernel 19.4.0.
In this paper we present the details of ROMULUSlib, the
construction of the data packets for command and data com-
munication over the TCP/IP network. We present the overall
structure of the ROMULUSlib code base and a set of utilities
that are a useful aid for anyone instantiating ROMULUSlib
for their DAQ and Control use case. Beside this, an inde-
pendent project, RomLibEmu [9] was initiated to develop
a regression testing framework for debugging systematic
faults during development and before the release of every
new version of the ROMULUSlib.

This paper is organized as follows: in background and
related work, we discuss some of the previous library im-
plementations developed for TCP/IP supervision and how
ROMULUSlib compares to the same. In the next section, we
give a brief overview of the CROME radiation monitoring
system architecture and the REMUS Supervision system, fol-
lowed by the details of the implementation of ROMULUSlib
that forms the interface for the SoC to SCADA communi-
cation. In this section we present the details of the TCP/IP
frame, supported commands, parameters and ranges with
their corresponding acknowledgement response and test util-
ities. ROMULUSlib supports both real-time stream and
buffered data stream such as status request, historical record
and events that are discussed here. In the end, we present the
current application use cases and tests deployed at CERN
and at the European Spallation Source (ESS) followed by
the future work and adaption of ROMULUSlib library for
varied use cases.

BACKGROUND AND RELATED WORKS
Early control operations at CERN radiation protection

employed PLC to SCADA based communication for control
application. CERN also uses this for LHC Cryogenics con-
trol in accelerator and experimental control, Gas systems,
Cooling systems, HVAC etc. For control and monitoring,
Ethernet based communication protocols such as Profinet
and Ethernet/IP are employed [10]. The UNICOS frame-
work is one example of the same [11]. Another example of
the communication protocol used for real-time automation
is the MODBUS TCP/IP which uses the MODBUS protocol
for communication encapsulated within the TCP/IP wrapper
for communication over the ethernet.

CERN currently started very recently using Zynq-based
SoCs for a wide range of applications in detector control
and front-end data acquisition electronics designs. These
SoCs offer greater flexibility to the user for design on pro-
grammable logic, offers an embedded linux platform on the
processing system for high-level software development and
provides faster performance due to the PS-PL interface. The
open-source WinCC OA is the currently widely adopted
SCADA framework for detector control applications which
is also used by REMUS supervision [8]. One of the adopted
communication frameworks in ATLAS Detector for DAQ to
DCS communication is the Quasar framework [12] which
allows building of OPC UA servers for client-server com-
munication. It is employed at ATLAS’s Tile Calorimeter
measurement[13] and Global Feature Extrator (gFEX) Hard-
ware Trigger[14] among others. Quasar’s client-server com-
munication model integrates with the WinCC OA SCADA
and allows read/write of predefined variables, and creation
of multiple OPC servers. A new library, MilkyWay, based
on FreeOpcUa is further being developed in Python [15].

While PLC-to-SCADA based communication frameworks
exist; with the introduction of SoC-to-SCADA systems,
fast and reliable safety critical communications framework
needed to be developed. Therefore, the development of com-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBR01

MOBR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

70 Device Control and Integrating Diverse Systems



munications protocol for safety-critical radiation monitoring
and control was initiated in 2015 by the CROME team at
CERN. The communications specifications provided by the
ROMULUSlib allows user to have communication reliability
of TCP/IP while having greater control over creation of vari-
able length data frames for DAQ and control applications.
ROMULUSlib runs on each communicating device and com-
municates with the WinCC OA based SCADA through a
driver. The users have the flexibility to update their own pa-
rameters of interest which compiles seamlessly with ROMU-
LUSlib. This further simplifies integration with embedded
linux userspace application development which makes RO-
MULUSlib suitable for adoption for SoC-to-SCADA TCP/IP
communication systems.

CROME: RADIATION MONITORING
ELECTRONICS AT CERN

The CROME device is developed to provide a versatile
interface for:

1. Continuous real-time monitoring of ambient dose
equivalent rates over up to nine orders of magnitude.

2. Alarm and interlock functionality with a probability of
failure down to 10𝑒−7.

3. Long term permanent and reliable data logging by link-
ing to a SCADA supervision or an expert application
running on a portable PC via Ethernet.

4. Edge computing with powerful processing capabilities
for embedded calculation.

The basic configuration of the CROME device consists
of the three main parts: CROME Measuring and Process-
ing Unit (CMPU), the CROME Alarm Unit (CAU) and the
CROME Uninterruptible Power Supply (CUPS). These are
connected to the global supervision structure as shown in
Fig. 1. The CMPU hosts the System-on-Module board which
implements a Zynq-7020. This SoC is composed of the 32-
bit ARM Processing System (PS) which runs CROMiX-18
a custom embedded Linux distribution developed using the
YOCTO project and the Programmable Logic (PL) FPGA
fabric that is programmed with a parameterizable hardware
implementation for readout, calculations and safety-critical
controls.

The front-end electronics is also part of the CMPU. It per-
forms analogue-to-digital conversion of the current signal
generated by the radiation detector to which it is attached
providing a continuous real-time measurement of ambient
dose equivalent rates. The CMPU in turn generates radia-
tion alarm and interlock signals and enables long-term and
data logging by integration with REMUS. The communi-
cation interface for the CROME devices and the REMUS
supervision is the ROMULUSlib and it provides four main
functionalities:

1. Networking: All communications happening over
TCP/IP frame is handled by the functions defined in
ROMULUSlib.

2. TCP/IP frame construction: ROMULUSlib provides
structs to encapsulate different data variables with sup-
port for nearly all C data types. This can be easily
updated by updating the struct table. The construction
of ROMULUS frame is handled by the ROMULUSlib,
including functions to access and modify specific parts
of the frame which provides much more flexibility and
control to the user.

3. Multiple Communication Modes: ROMULUSlib pro-
vides full-duplex communication over TCP/IP via mul-
tiple communication modes to transmit single, multiple
and infinite frames which can be used for streaming
data in multiple ways as per application requirement.

4. Utilities: Multiple utilities are provided within the RO-
MULUSlib for utilities such as log reporting of applica-
tion flow, warnings and errors, functions to print frame,
struct and internal data struct, checksum check func-
tions and check functions for memory allocation and
free memory.

CERN’s REMUS supervision [7, 8], is a WinCC OA
based SCADA supervision system which is used for commu-
nication and parameterization of CROME devices. REMUS
integrates the SCADA system with the open-source stream-
ing platform Apache Kafka, a widely adopted technology,
that allows data-streaming in near real-time data to the Data
Visualization Tools and Web Interfaces. REMUS provides
a secure interface for full-duplex communication interface
with external Control devices. A functional architecture
of the REMUS supervisory control along with the applica-
tion of ROMULUSlib for data streaming and control from
WinCC OA is shown in Fig. 2.

ROMULUSLIB
The CROME devices communicate with REMUS using

the full-fledged TCP/IP protocol which is implemented in
ROMULUSlib, a stand-alone TCP/IP networking library de-
veloped in C that supports cross-compilation and portability
by making use of the POSIX-standard, more specifically
sockets. TCP/IP communication has been chosen to ensure
high reliability and automatic data reordering. Therefore,
all data communicated as ROMULUS data packets are en-
capsulated in TCP/IP frames. The device responds to most
of the messages sent from the supervision. This is reconfig-
urable by defining the structure of the ROMULUS frames
and defining the response packets as per requirements spec-
ifications. For each received message the device returns
an acknowledge message. The acknowledgement messages
also ensure correct functionality of devices by having unique
request-acknowledge pair. Specific error messages are com-
municated to be returned to ensure that there is a consistent
answer from the device (e.g. malformed or unknown mes-
sage). All packages received by the devices also contain a
Sequence ID of the sender. The response or acknowledge
message will include this Sequence ID. This ensures that the
device can have multiple concurrent users. Besides SCADA

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBR01

Device Control and Integrating Diverse Systems

MOBR01

71

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 2: REMUS Supervisory Control and Data Acquisition Architecture [7, 8], Courtesy of Adrien Ledeul.

supervision, the device is also fully configurable and param-
eterizable by a dedicated standalone ‘expert application’ that
runs on a portable computer and is connected either directly
to the device or through the network via the Ethernet socket.
For this application, the CROME Team has developed a stan-
dalone application in NI LabVIEW that can connect to the
CROME devices through the network.

In this section, we present the protocol used for the com-
munication between the CROME devices and the REMUS
supervision. The protocol is also used to communicate with
the NI LabVIEW-based expert application.

ROMULUS Data Frame
The ROMULUS data packet, as shown in Fig. 3, is en-

capsulated into a TCP/IP frame whose payload is limited
to ETHERET_MTU (1500 Bytes) while having no fixed
length for data packet itself in order to obtain more flexi-
bility. Within the ROMULUS Data packet, the header is
formed by: data length of the DATA, ID of the source of
the message, ID of the message, the command code and the
number of parameters. This is followed by the Data corre-
sponding to the command code and the footer, which is the
checksum.

Figure 3: ROMULUS TCP/IP Data Packet.

The maximum data length of the DATA in bytes can be
calculated as follows:
maxDLC = ETHERNET_MTU - [sizeof (IP header) +
sizeof (TCP header) + sizeof (romulus_frame_header) +
sizeof (romulus_frame_footer)]

Both, command and response packets have the same struc-
ture. A generic DATA segment of the ROMULUS Data
Frame for Get/Set commands is shown in Fig. 4. Note that,
multiple parameters can be communicated within one data

Figure 4: Data segment of any generic get/set command in
ROMULUSlib.

frame. Therefore, it is possible to initiate multiple opera-
tions through a single message. Thus, the variable length of
the ROMULUS data frame is due to the field DATA whose
length is variable. In the response frame, if no error has oc-
curred, the content of the DATA field of response will begin
with an Acknowledgement (ACK) code. Otherwise, if an
error occurs, the device returns an error code corresponding
to one of the related errors, such as Acknowledgment, Illegal
command, Illegal value etc.

We have provided command definition and data frame con-
struction support for Simple and Complex Request-Response
Schemes of communication within ROMULUSlib, which
are discussed in the following section.

ROMULUSlib Commands
ROMULUSlib commands define how the device and su-

pervision can communicate using the ROMULUS protocol.
ROMULUSlib currently supports 18 commands to inter-
act with the CERN’s REMUS/ROMULUS protocol. These
commands are categorized into two different schemes of
communication within ROMULUSlib. These are namely
Simple Request-Response Scheme and Complex Request-
Response Scheme.

ROMULUS Simple Request-Response Scheme: This is
the most common mode for communication using the RO-
MULUS protocol. The supervision sends a request to the
measurement device, which is then responded to with a re-
sponse frame as shown in Fig. 5. Example of this Simple
Request-Response scheme is Get and Set Parameter Request
and Response, Get and Set Status Request and Response,
and Get and Set Timestamp Request and Response.

ROMULUS Complex Request-Response Scheme: Within
the complex Request-Response scheme the communication

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBR01

MOBR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

72 Device Control and Integrating Diverse Systems



Figure 5: ROMULUS Simple Request-Response Scheme.

could be a Real request-response scheme or a Streaming
request-response scheme, as shown in Fig. 6.

The Real request-response scheme communication mode
is similar to the simple request-response scheme, with the
only difference in being that the measurement device can
reply with multiple response frames while the last possible
response frame is always fixed to indicate the end of the com-
munication. Example of Real Request-Response scheme is
Historical Data Request and Response frames, which initi-
ates communication of multiple frames with the last frame
being the Historical Data Done command frame.

In the Streaming request-response scheme, the supervi-
sion sends one request to initiate streaming and then the
measurement device sends a possibly infinite number of re-
sponses until either side breaks the connection or sends a
stop command to terminate the stream. Example of Stream-
ing Request-Response scheme is Real-Time Stream request
and response which can be terminated by Real-Time Stream
Stop command.

Figure 6: ROMULUS Complex Request-Response Scheme.

Associated with each command are the certain set of user
defined parameters and value pair that the user would want to
create for their own applications. This is implemented as C
Struct data type. Within the structs, the user can define all the
different parameters for which a unique ID is automatically
generated by ROMULUSlib at compile time which is used
in ROMULUS frame construction. Within the C struct,
the library currently supports all essential data types: bool,
unsigned char/uint8, int32, int64 and float. To categorically
define the communicated parameters, eight structs each with
a different use case, are defined. A summary of the C struct
is provided in Table 1.

ROMULUSlib Architecture and Functions
The data to be communicated is prepared by the CROME

devices and handled by ROMULUSlib for communication.
ROMULUSlib provides functions for constructing and com-
municating TCP/IP frames with the supervision system.
Frame construction is carried out by functions defined within
romulus_frame.h; including function to define the life cycle
of a frame, access functions to access and modify specific

parts of the frame, validator function for checking the valid-
ity of the frame and utility functions to print and debug the
frame. Once a valid frame is constructed, functions defined
within romulus_net.h are responsible for TCP/IP communi-
cation with the supervision system. This includes functions
to control and send and receive romulus frames. ROMULUS-
lib also provides functions to report version and along with
run logs, warning and error messages, and also generates
timestamps in both, UNIX epoch and human readable form.
A brief summary of all important functions of ROMULUS-
lib with it’s placement in the corresponding header is given
is Table 2 and a dependency graph of all the ROMULUSlib
headers is shown in Fig. 7.

Figure 7: Dependency Graph of all ROMULUSlib Headers.

ROMULUSlib Utilities
ROMULUSlib works as a standalone library for Linux

User Space application. In order to facilitate debugging, RO-
MULUSlib also provides additional utilities. These utilities
are meant to aid the developer in writing complete embed-

Table 1: Summary of Supported Data from CROME Orga-
nized in C Struct

Struct Description
romulus_hist_data_struct Struct for historic data variables.
romulus_hist_event_struct Struct for hist event variables.
romulus_hist_int_struct Struct for historic data that is

not used by the supervision.
romulus_hist_ts_struct Struct to define time ranges.
romulus_local_params_struct Struct for Local parameters to

parameterize the system locally.
romulus_params_struct Struct for Romulus parameters,

used to parameterize the system
and read back inherent
parameters from the system.

romulus_rtmeas_struct Struct which contains real time
measurements.

romulus_status_struct Struct which contains variables
to indicate system status .

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBR01

Device Control and Integrating Diverse Systems

MOBR01

73

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Table 2: Summary of ROMULUSlib Functionalities.

File Description

romulus.c

Contains:
- all the different structs which are used by the ROMULUS library,
- all debug functions to query and manipulate the amount of log,
- time function definitions to generate timestamp in machine and human readable form,
- all function definitions to read the version of the library,
- all function and data type definitions for ROMULUSlib’s internal types,
- definitions to create parameter protection masks to specify the write-protected parameters.

romulus_frame.c

Contains:
- all structure definitions including data types and constants related to romulus frames,
- all functions required to define the life-cycle of a TCP/IP frame such as header allocation,

initialization, allocation, sequence ID generation and free frame memory,
- all functions required to access parts of the TCP/IP frame such as, read header, footer,

response code and data with offset and append header, footer and data to the frame,
- a specific function to create request and response frames, including functions to

check validity of the frames,
- a specific function to update the parameters of the struct with contents of the TCP/IP frame,
- a specific function which are used to manipulate/use status frames, historical data and

events frame and real-time measurement frame,
- utility functions such as print frame for debugging.

romulus_serialisation.c Functions to read struct data from files.
romulus_hist.c All definitions concerning historic data and events.

romulus_internals.c

- Struct, variable & function definition for romulus local parameters, internal historical data.
- Definition of printing and IO functions.
- Definition of internal data structures.
- Struct, variable and function definition for romulus checksum.
- Definition of some utility macros.

romulus_leak_check.c Functions for leack checking, The leakcheck functions print information about memory
allocations and calls to free().

romulus_net.c

- All type definitions for romulus frame based network connections.
- All functions required to manage the life-cycle of connections to transmit romulus frames
- All functions required to send and receive romulus frames.
- All functions required to control the sending and reception of romulus frames.

ded applications. Some of these utility applications are as
follows:

1. remote_stream: Remote Stream application queries the
Embedded Application running on PS and prints the
TCP/IP frames for Real-Time Data streaming on port
n+1.

2. struct_info_printer: Prints the all Struct Information
such as member name, ID and data type as defined by
the user.

3. remote_dump: Remote Dump application queries the
Embedded Application running on PS and prints status,
parameters and hist data by fetching the TCP/IP frames
streaming on port n.

RESULTS
At present, 150 CROME devices have been deployed at

CERN as the new generation of radiation monitors, all com-
municating simultaneously with the REMUS supervision via

ROMULUSlib ver6.2. The next major release for ROMU-
LUSlib ver7.0 is tested and is scheduled for deployment in
December 2021. All tests of ROMULUSlib are performed by
a standalone regression testing framework, RomLibEmu[9].
RomLibEmu is developed in Python and works indepen-
dently of ROMULUSlib to test CROME device’s reaction to
misconfigurations. This provides a stress testing framework
for the application’s network interface and test the overall
robustness of the software towards the injected faults errors.

EPICS Integration
CROME radiation monitors equipped with ROMULUSlib

are currently also in use at the European Spallation Source
(ESS) in Lund, Sweden. The ESS’ Radiological and Envi-
ronmental Monitoring System (REMS)[16] uses a two fold
approach: Influx DB and Grafana approach for quick online
integration, and EPICS integration for real time DAQ and
control.

The ESS REMS development team has integrated
EPICS [17], the software infrastructure for development

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBR01

MOBR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

74 Device Control and Integrating Diverse Systems



of distributed control systems widely used in particle ac-
celerators, large physics experiments and telescopes. The
ESS made use of the asynDriver module, a general purpose
driver that integrates the device code to the hardware-level
code. To integrate EPICS with CROME, initialization files
to establish communication link to CROME devices have
to be defined using ROMULUSlib. Suitable database files
to describe the record types and names of the process vari-
ables have to be defined. The CROME devices communicate
with the EPICS Input-Output-Controllers that are deployed
on a dedicated virtual machine as services and launched
at start-up. The collected measurements are posted to an
influx database which is then made available via the Grafana
interface on the ESS network.

CONCLUSION AND FUTURE WORK

In this paper, we have presented ROMULUSlib, a stan-
dalone TCP/IP networking library developed in C. We have
presented the ROMULUS data packet structure within the
TCP/IP frame, and the communication protocol through
request-response mechanism which allows supervision sys-
tem to request single frame, multiple frames or streaming
data frames. Besides this, a comprehensive feature list of
all ROMULUSlib functionalities is presented along with
debug tools. ROMULUSlib communicates seamlessly with
SCADA supervision systems for DAQ and control appli-
cations while reliably carrying out millions of data packet
transactions every hour (e.g. REMUS supervision handles
2,000,000 measurements/hour from CROME devices cur-
rently operational at CERN).

ROMULUSlib makes use of C Struct for storage of ap-
plication variables of corresponding data types. These C
Struct representation allows users to define their own vari-
ables as per the application requirement and recompile to
autonomously generate ROMULUSlib executable in either
arm32 or x86_64 architectures with the new set of appli-
cation variables. ROMULUSlib currently supports bool,
unsigned char/uint8, int32, int64 and float data types to de-
fine application variables. Support for uint32 and uint64
will be added in the next versions.

The library has also been developed into a Labview VI
using native Labview primitives which allows fast testing
of new features and debugging applications. ROMULUSlib
currently has been tested for reliability using RomLibEmu,
an independent software framework developed in Python;
and is presently operational with REMUS supervision sys-
tem at CERN in Geneva, Switzerland and REMS EPICS
supervision system at ESS in Lund, Sweden. In the future
versions, we intend to add more regression tests for the li-
brary and while robust in application, we would be adding
further to the instruction set as per application requirement,
along with scaling the library to support varied processor
architectures.

ACKNOWLEDGEMENTS
The authors would like to thank Markus Widorski (CERN)

for REMUS integration tests, Alasdair Day (ESS) and Juha
Hast (ESS) for the performance tests at ESS and the integra-
tion of the library into EPICS supervisory system.

REFERENCES
[1] CROME, https://crome.web.cern.ch/.
[2] H. Boukabache et al., “Towards a novel modular architecture

for cern radiation monitoring,” Radiation protection dosime-
try, vol. 173, no. 1-3, pp. 240–244, 2017.

[3] C. Toner et al., “Fault resilient fpga design for 28 nm zynq
system-on-chip based radiation monitoring system at cern,”
Microelectronics Reliability, vol. 100, p. 113 492, 2019.

[4] H. Boukabache, “Crome remote management of soc-based
radiation monitors both at cern and ess,” System-on-Chip
2nd Workshop - CERN, 2021. https://indico.cern.
ch/event/996093/

[5] K. Ceesay-Seitz, H. Boukabache, and D. Perrin, “A func-
tional verification methodology for highly parametrizable,
continuously operating safety-critical fpga designs: Applied
to the cern radiation monitoring electronics (crome),” in
SAFECOMP 2020 : International Conference on Computer
Safety, Reliability, and Security, 2020.

[6] S. K. Hurst, H. Boukabache, and D. Perrin, “Overview of a
complete hardware safety integrity verification according to
iec 61508 for the cern next generation of radiation monitoring
safety system,” in Proceedings of the 30th European Safety
and Reliability Conference and 15th Probabilistic Safety
Assessment and Management Conference, 2020.

[7] A. Ledeul, A. Savulescu, G. S. Millan, and B. Styczen, Data
streaming with apache kafka for cern supervision, control
and data acquisition system for radiation and environmental
protection, 2019.

[8] A. R. Ledeul, “Integration of crome into remus,” SoC In-
terest Group Meeting, 2020. https://indico.cern.ch/
event/882283/

[9] K. Ceesay-Seitz, M. Leveneur, H. Boukabache, and D. Perrin,
“Romlibemu: Network interface stress tests for the cern radi-
ation monitoring electronics (crome),” in 18th International
Conference on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’21), 2021.

[10] R. Mastyna, J. Casas-Cubillos, E. Blanco Vinuela, N. Trik-
oupis, and M. Felser, “Profinet communication card for the
cern cryogenics crate electronics instrumentation,” 2017.

[11] H. Milcent, E. Blanco, F. Bernard, and P. Gayet, “Unicos:
An open framework,” in 12th ICALEPCS Int. Conf. on Accel-
erator and Large Expt. Physics Control Systems. Grenoble
(France), 2009, pp. 12–16.

[12] S. Schlenker, C.-V. Soare, D. Abalo Miron, V. Filimonov,
B. Farnham, and P. Nikiel, “Quasar-a generic framework for
rapid development of opc ua servers,” 2015.

[13] M. G. D. Gololo, “Soc developments for the detector control
system of atlas tile calorimeter at the hl-lhc,” System-on-
Chip 2nd Workshop - CERN, 2021. https://indico.
cern.ch/event/996093/

[14] E. Smith, “Zynq us+ mpsoc in the gfex hardware trigger
in atlas,” System-on-Chip 2nd Workshop - CERN, 2021.
https://indico.cern.ch/event/996093/

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBR01

Device Control and Integrating Diverse Systems

MOBR01

75

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



[15] P. Moschovakos, “Socs for detector controls and their ap-
plications,” System-on-Chip 2nd Workshop - CERN, 2021.
https://indico.cern.ch/event/996093/

[16] J. Hast, “Ess use case of the crome monitor with epics,”

2nd System-on-Chip Workshop - CERN, 2021. https://
indico.cern.ch/event/996093/

[17] EPICS, https://epics-controls.org/.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOBR01

MOBR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

76 Device Control and Integrating Diverse Systems


