CRYOGENIC CONTROLS TODAY AND TOMORROW

Marco PEZZETTI, Philippe GAYET CERN TE-CRG

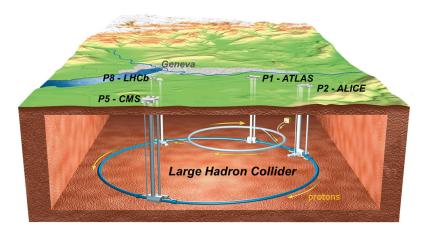
ICALEPCS 2021 Session Title: [FRAL] Project Status Reports II Contribution ID: 1702 Program Code: FRAL03 22-OCT-21

TE-CRG

Marco Pezzetti

outline

- Introduction CERN LHC Cryogenic infrastructure
- Cryogenic Control System TODAY
- Cryogenic Control System evolution in the NEAR FUTURE
- Cryogenic Control System TOMORROW
- Conclusion

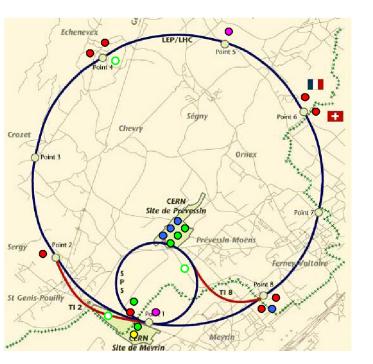


18th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems

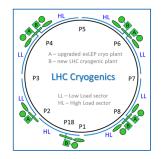
TE-CRG

Marco Pezzetti

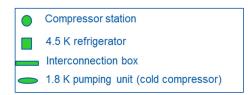
CERN LHC Cryogenic Infrastructure


CERN LHC circumference ~ 27 km.

Situated at ~ 100 m underground.



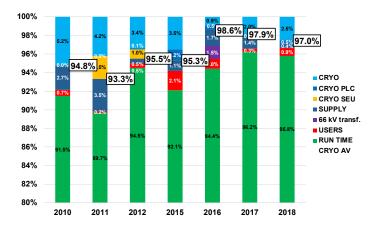
CERN LHC Cryogenic Infrastructure



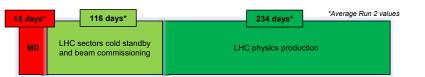
- LHC accelerator
- LHC detectors
- Other detectors
- Test areas
- Central services
- O Standby

Total for 8 sectors:Compressors: 64Turbines: 74Cold Comp.: 28Leads: 1'200I/O signals: ~120'000PID loops: ~7'000PLC: ~150 cpu in production

TE-CRG



18th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems


Marco Pezzetti

CERN LHC Machine Availability

Cryogenic Availability Evolution

Typical yearly Physic Run campaign for LHC

Cryo availability : **97.0%** for 8 independent sectors ⇔**99.6%** for each cryoplant !!

⇔99.99% for Cryo Control System

Day to day technical challenges : availability / optimisation


Marco Pezzetti

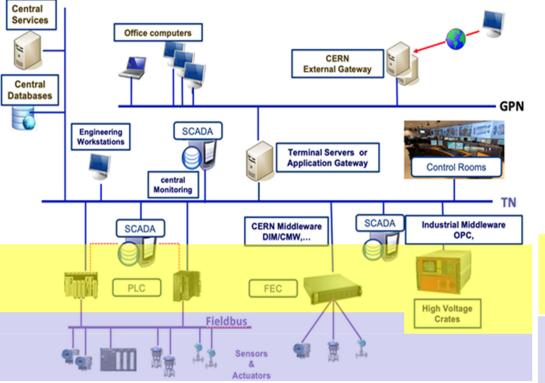
TE-CRG

ICALEPCS

TE-CRG

Marco Pezzetti

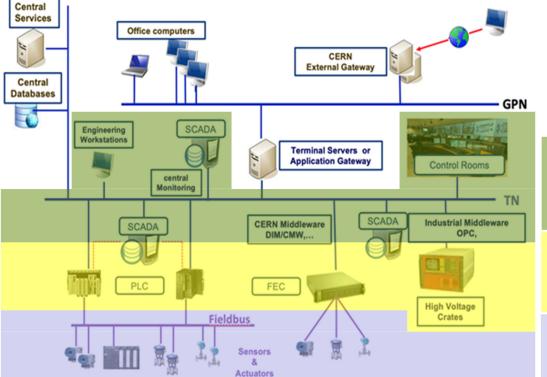
ICALETCS



Instrumentation Layer (IL): CERN Cryogenic control systems use industrial sensors (pressure, temperature, speed...), conditioning units and actuators (heaters , valves,..). To ensure the correct communication with the devices copper cables, dedicated Ethernet network or industrial field-buses are used.

Marco Pezzetti

TE-CRG


Control Layer (CL): Control duties exploiting the information gathered from the Level 0 are executed within PLC. Safety interlocks are either cabled or programmed in local protection PLC. The long-distance integration (site to site) relies on the TN, the local one uses field-buses with both fibres and copper cables or cables to/from the cabinets.

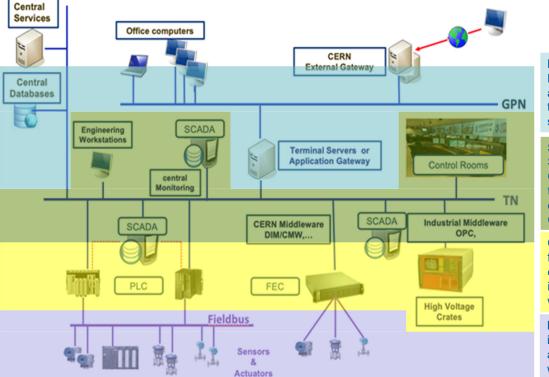
Instrumentation Layer (IL): CERN Cryogenic control systems use industrial sensors (pressure, temperature, speed...), conditioning units and actuators (heaters, valves,..). To ensure the correct communication with the devices copper cables, dedicated Ethernet network or industrial field-buses are used.

Marco Pezzetti

TE-CRG

ICALETCS

Supervision Layer (SL): Industrial systems are supervised through Data Servers running WinCC-OA® SCADA. HMI clients use Linux or Windows Operator WorkStation. It offers visualisation of process hierarchy, access to interlocks, control loop auto tuning, **but also** direct access to device documentation, and interface toward the other control systems, the Central Alarm System, the long-term logging DB (NXCALS).


Control Layer (CL): Control duties exploiting the information gathered from the Level 0 are executed within PLC. Safety interlocks are either cabled or programmed in local protection PLC. The long-distance integration (site to site) relies on the TN, the local one uses field-buses with both fibres and copper cables or cables to/from the cabinets.

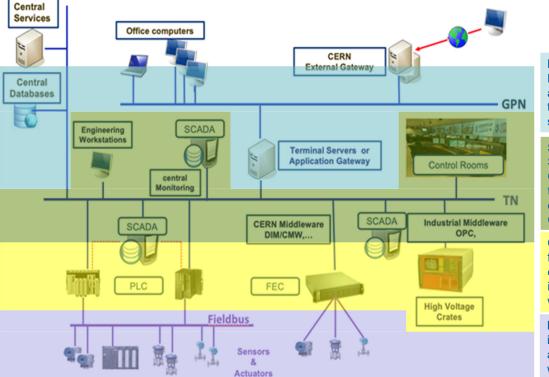
Instrumentation Layer (IL): CERN Cryogenic control systems use industrial sensors (pressure, temperature, speed...), conditioning units and actuators (heaters , valves,..). To ensure the correct communication with the devices copper cables, dedicated Ethernet network or industrial field-buses are used.

Marco Pezzetti

TE-CRG

Maintenance Operation Layer (ML): At this level, the CMMS (Infor-EAM) and the Accelerator Fault Tracker (AFT) are already implemented and used for some systems. (CRG, CV,...). these applications connected to the GPN, are not yet fully integrated with the present cryogenic control system but progresses have been implemented (see SL)

Supervision Layer (SL): Industrial systems are supervised through Data Servers running WinCC-OA® SCADA. HMI clients use Linux or Windows Operator WorkStation. It offers visualisation of process hierarchy, access to interlocks, control loop auto tuning, **but also** direct access to device documentation, and interface toward the other control systems, the Central Alarm System, the long-term logging DB (NXCALS).


Control Layer (CL): Control duties exploiting the information gathered from the Level 0 are executed within PLC. Safety interlocks are either cabled or programmed in local protection PLC. The long-distance integration (site to site) relies on the TN, the local one uses field-buses with both fibres and copper cables or cables to/from the cabinets.

Instrumentation Layer (IL): CERN Cryogenic control systems use industrial sensors (pressure, temperature, speed...), conditioning units and actuators (heaters , valves,..). To ensure the correct communication with the devices copper cables, dedicated Ethernet network or industrial field-buses are used.

Marco Pezzetti

TE-CRG

ICHLETCS

Maintenance Operation Layer (ML): At this level, the CMMS (Infor-EAM) and the Accelerator Fault Tracker (AFT) are already implemented and used for some systems. (CRG, CV,...). these applications connected to the GPN, are not yet fully integrated with the present cryogenic control system but progresses have been implemented (see SL)

Supervision Layer (SL): Industrial systems are supervised through Data Servers running WinCC-OA® SCADA. HMI clients use Linux or Windows Operator WorkStation. It offers visualisation of process hierarchy, access to interlocks, control loop auto tuning, **but also** direct access to device documentation, and interface toward the other control systems, the Central Alarm System, the long-term logging DB (NXCALS).

Control Layer (CL): Control duties exploiting the information gathered from the Level 0 are executed within PLC. Safety interlocks are either cabled or programmed in local protection PLC. The long-distance integration (site to site) relies on the TN, the local one uses field-buses with both fibres and copper cables or cables to/from the cabinets.

Instrumentation Layer (IL): CERN Cryogenic control systems use industrial sensors (pressure, temperature, speed...), conditioning units and actuators (heaters , valves,..). To ensure the correct communication with the devices copper cables, dedicated Ethernet network or industrial field-buses are used.

Marco Pezzetti

TE-CRG

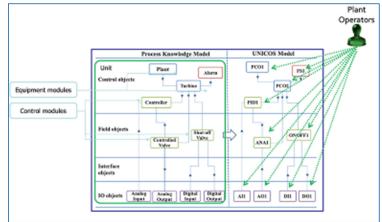
ICHLETCS

Company Layer (CL) : At this level, this level is filled with Administrative Information Services (AIS) applications. Up to now there are only few ad-hoc integrations

Maintenance Operation Layer (ML): At this level, the CMMS (Infor-EAM) and the Accelerator Fault Tracker (AFT) are already implemented and used for some systems. (CRG, CV,...). these applications connected to the GPN, are not yet fully integrated with the present cryogenic control system but progresses have been implemented (see SL)

Supervision Layer (SL): Industrial systems are supervised through Data Servers running WinCC-OA® SCADA. HMI clients use Linux or Windows Operator WorkStation. It offers visualisation of process hierarchy, access to interlocks, control loop auto tuning, **but also** direct access to device documentation, and interface toward the other control systems, the Central Alarm System, the long-term logging DB (NXCALS).

Control Layer (CL): Control duties exploiting the information gathered from the Level 0 are executed within PLC. Safety interlocks are either cabled or programmed in local protection PLC. The long-distance integration (site to site) relies on the TN, the local one uses field-buses with both fibres and copper cables or cables to/from the cabinets.

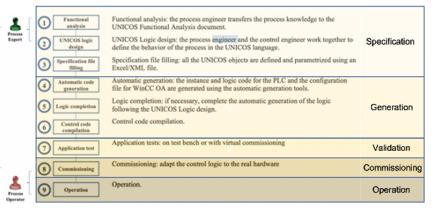

Instrumentation Layer (IL): CERN Cryogenic control systems use industrial sensors (pressure, temperature, speed...), conditioning units and actuators (heaters , valves,..). To ensure the correct communication with the devices copper cables, dedicated Ethernet network or industrial field-buses are used.

Marco Pezzetti

TE-CRG

ICALETCS

Cryogenic Control Applications

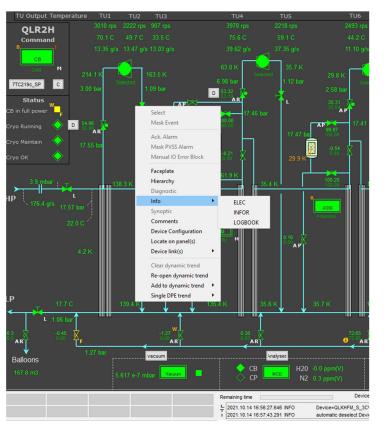

Cryogenic Application Generation

Specification: The process and the control engineers prepare the XML inputs files and the templates for the automatic generator : UNICOS Application Builder (UAB) Generation: The UAB generator combines the XML inputs files and the templates for PLC codes and SCADA panel, to produce the ready to import applications Validation: Applications are tested either on a test bench or using a simulator Commissioning: Applications are imported in CL & SL adapted and optimized if necessary Operation: Applications enter in production

To develop a cryogenic control application CERN engineers decompose a facility in a hierarchy of building blocks from the complete facility in EM down to the actuators CM and for each EM a control logic is specified and completed by interlocks for CM

The operation teams have access to classical SCADA tools (e.g., process synoptics, time stamped alarms, events lists, trend curves) and also to the **visualisation of** the **process hierarchy**, the **interlocks** per devices, the control loop auto tuning, and the device documentation.

Thus CERN UNICOS with Continuous Process Control package (UCPC) applications **ease the operator's ability** to follow the evolution of the process, understand the dynamics of a situation, the role of each physical component, identify the origin of a failure, and predict what could happen in the near future.



Marco Pezzetti

TE-CRG

ICALETCS

CRYOGENIC CONTROL SYSTEM EVOLUTION IN THE NEAR FUTURE Supervision Level evolution to facilitate the operator's duties

ICALEPCS

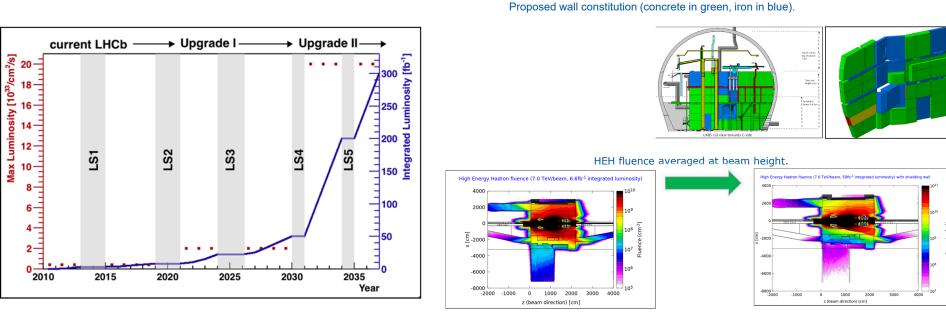
"Operation oriented" Electrical schemas

EN WORK ORDERS	🕶 Position QLC1H-WAT-FT169 🛱 SAVE + NEW 🗑 DELETE 🖺 🖆 🔟 📓 🗹 🛙						0214
LATE TODAY WEEK ALL	GENERAL	^	EDI	IS DOCUMENTS []			^
	Alias GLC1H_WAT_FT169		e	🔯 🖬 🖉 X			
	Description * HELIUM TO COMPRESSOR SUCTION FLOW TRANSMITTER		野	ID .	Title	Status	
	HELDIN ID COMPRESSION BELTION FLOW INVESTIGATION Degr:Service User OPDP - CITYO NO LHC EXPLOITATION EQUIPMENTS Stanse * 1 - Installe et Maintenu		>	<u>1837882 v.1</u>	2.7.3 INSTRUMENT DATA SHEET - 150P0004EIX001_00_Part48.pdf	In Work	
			>	1837941 v.1	2.7.5 ELECTRICAL HOOK UP - 150P0004EIH003_01_Part6.pdf	In Work	
		Ŧ	>	1837920 v.1	2.7.4 INSTRUMENT HOOK UP - 150P0004EIH001_00_Part18.pdf	🛑 In Work	
	DETAILS	^			Per page 5 🗸	- 1-3 of 3 < <	> >1
	Class 04IT - TRANSMITTERS - TRANSMETTEURS		NC	8 []			^
	Category		1.0			=	

TE-CRG

"Maintenance oriented" DB asset management

Smart & connected Logbook

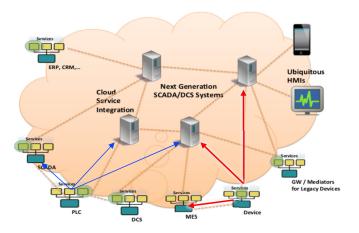

Marco Pezzetti

CRYOGENIC CONTROL SYSTEM EVOLUTION IN THE NEAR FUTURE

CERN LHC Pt8 LHCb Detector

TE-CRG

Marco Pezzetti


Radiation tolerance consolidation both in "hard" solution and in a serious investment in more radtol electronic...

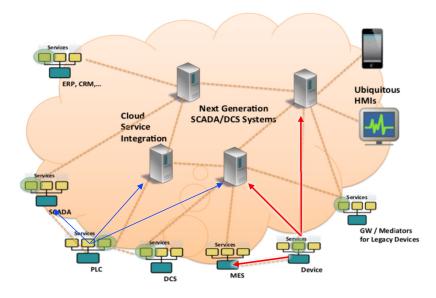
CRYOGENIC CONTROL SYSTEM TOMORROW

Future Cryogenic Control system shall be based on a Cyber Physical Cloud based Control (CPSC) architecture system using :

Service Oriented Architecture (SOA) implemented in a cloud.

Internet of Things Devices (IoT).

Marco Pezzetti

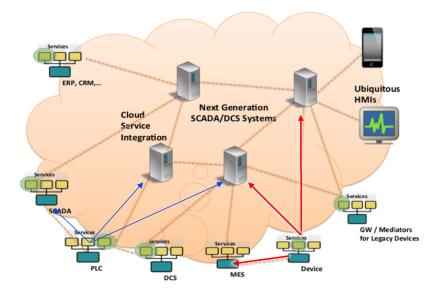

TE-CRG

ICALEPCS

SOA - Service Oriented Architecture

PLC comm Device comm Device comm

TE-CRG


Supports cross layer integration to make large distributed systems more interoperable and make available the services needed for the IOT devices.

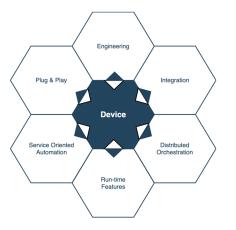
Marco Pezzetti

SOA - Service Oriented Architecture

PLC comm Device comm Device comm

Supports cross layer integration to make large distributed systems more interoperable and make available the services needed for the IOT devices.

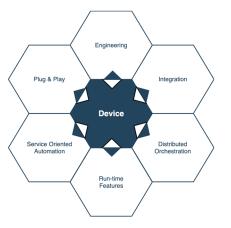
The services embedded in the system are loosely coupled. They operate independently from each other. Their interactions are stateless, asynchronous and not context-related.


Marco Pezzetti

TE-CRG

IOT Device Specificities

With IOT the control systems devices are no longer at the lowest level of the control pyramid but they are the node of interactions with several services across the levels.


TE-CRG

Marco Pezzetti

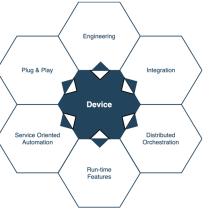
IOT Device Specificities

With IOT the control systems devices are no longer at the lowest level of the control pyramid but they are the node of interactions with several services across the levels.

TE-CRG

Marco Pezzetti

Service Oriented Automation uses the application domain as source of knowledge. It applies techniques to describe the available information (e.g. the use of semantics, ontology), and web service technologies to capture them in an automated way.


ICALETCS

IOT Device Specificities

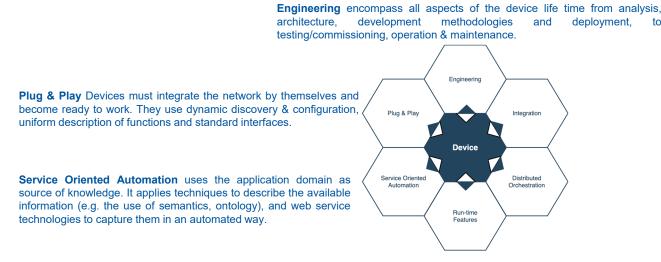
With IOT the control systems devices are no longer at the lowest level of the control pyramid but they are the node of interactions with several services across the levels.

Plug & Play Devices must integrate the network by themselves and become ready to work. They use dynamic discovery & configuration, < uniform description of functions and standard interfaces.

Service Oriented Automation uses the application domain as source of knowledge. It applies techniques to describe the available information (e.g. the use of semantics, ontology), and web service technologies to capture them in an automated way.

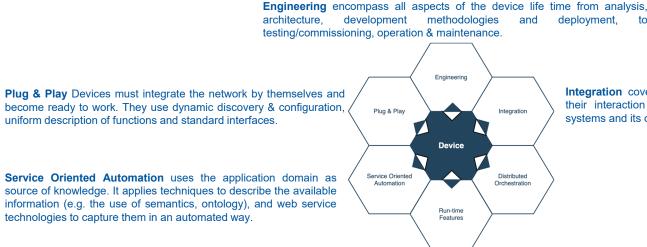
TE-CRG

Marco Pezzetti


IOT Device Specificities

With IOT the control systems devices are no longer at the lowest level of the control pyramid but they are the node of interactions with several services across the levels.

to


TE-CRG

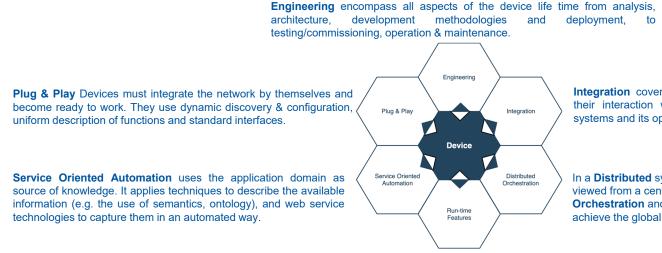
Marco Pezzetti

IOT Device Specificities

With IOT the control systems devices are no longer at the lowest level of the control pyramid but they are the node of interactions with several services across the levels.

Integration covers the interoperability devices with other ones), and their interaction with other services such as the entire production systems and its optimisation, the maintenance,...

Marco Pezzetti

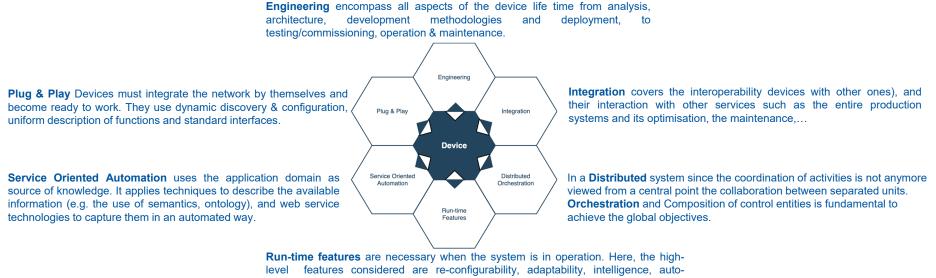

to

TE-CRG

IOT Device Specificities

With IOT the control systems devices are no longer at the lowest level of the control pyramid but they are the node of interactions with several services across the levels.

Integration covers the interoperability devices with other ones), and their interaction with other services such as the entire production systems and its optimisation, the maintenance,...

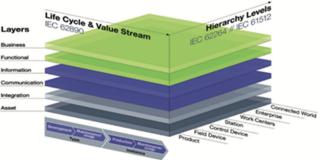

In a **Distributed** system since the coordination of activities is not anymore viewed from a central point the collaboration between separated units. **Orchestration** and Composition of control entities is fundamental to achieve the global objectives.

Marco Pezzetti

TE-CRG

IOT Device Specificities

With IOT the control systems devices are no longer at the lowest level of the control pyramid but they are the node of interactions with several services across the levels.


TE-CRG

Marco Pezzetti

sustainability...

ICALETCS

Rami 4.0 Method in CERN Cryo control system

Source: Plattform Industrie 4.0

TE-CRG

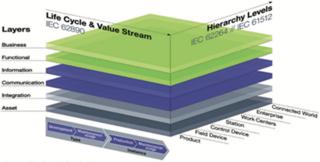
(RAMI 4.0)

AXIS 1 – Hierarchy : The Factory

At CERN the hierarchy level axis, it's necessary to integrate accelerators and detectors equipment (Field devices) with the system levels (control devices, Controlled system, CERN campus, Physics community, Connected world).

AXIS 2 – Product Life Cycle

The development process shall use a lifecycle management framework that spans from concept (requirements, design, procurement implementation, transition to operation, operation, maintenance/repair upgrade) to decommissioning.


AXIS 3 - Architecture

Services, interfaces and guidelines shall be conceived to allow the Hierarchy and life cycle components to interact with the different functional levels

Marco Pezzetti

ICALEPCS

Rami 4.0 Method in CERN Cryo control system

Source: Plattform Industrie 4.0

TE-CRG

(RAMI 4.0)

AXIS 1 – Hierarchy : The Factory

At CERN the hierarchy level axis, it's necessary to integrate accelerators and detectors equipment (Field devices) with the system levels (control devices, Controlled system, CERN campus, Physics community, Connected world).

Axis 1 – Hierarchy: The Factory

The New World: Industrie 4.0

- · Flexible systems and machines
- Functions are distributed
 throughout the network
- Participants interact across hierarchy levels
- Communication among all participants
- Product is part of the network

Connected World Smart Factory

Smart Products

18th Biennial International Conference on Accelerator

and Large Experimental Physics Control Systems

AXIS 2 – Product Life Cycle

The development process shall use a lifecycle management framework that spans from concept (requirements, design, procurement implementation, transition to operation, operation, maintenance/repair upgrade) to decommissioning.

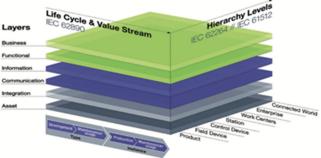
AXIS 3 - Architecture

Services, interfaces and guidelines shall be conceived to allow the Hierarchy and life cycle components to interact with the different functional levels

Marco Pezzetti

Rami 4.0 Method in CERN Cryo control system

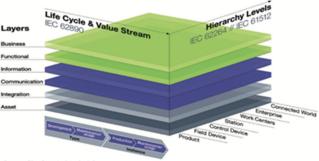
At CERN the hierarchy level axis, it's necessary to integrate accelerators and detectors equipment (Field devices) with the system levels (control devices, Controlled system, CERN campus, Physics community, Connected world).


AXIS 2 – Product Life Cycle

The development process shall use a lifecycle management framework that spans from concept (requirements, design, procurement implementation, transition to operation, operation, maintenance/repair upgrade) to decommissioning.

Source: Plattform Industrie 4.0

TE-CRG


AXIS 3 - Architecture

Services, interfaces and guidelines shall be conceived to allow the Hierarchy and life cycle components to interact with the different functional levels

Marco Pezzetti

ICALEPCS

Rami 4.0 Method in CERN Cryo control system

Source: Plattform Industrie 4.0

(RAMI 4.0)

AXIS 1 – Hierarchy : The Factory

At CERN the hierarchy level axis, it's necessary to integrate accelerators and detectors equipment (Field devices) with the system levels (control devices, Controlled system, CERN campus, Physics community, Connected world).

AXIS 2 – Product Life Cycle

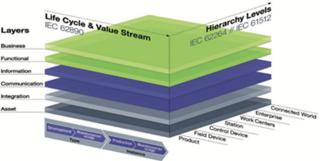
The development process shall use a lifecycle management framework that spans from concept (requirements, design, procurement implementation, transition to operation, operation, maintenance/repair upgrade) to decommissioning.

AXIS 3 - Architecture

Services, interfaces and guidelines shall be conceived to allow the Hierarchy and life cycle components to interact with the different functional levels

Axis 3 – Architecture

TE-CRG



ICTLEPCS

18th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems

Marco Pezzetti

Rami 4.0 Method in CERN Cryo control system

Source: Plattform Industrie 4.0

(RAMI 4.0)

AXIS 1 – Hierarchy : The Factory

At CERN the hierarchy level axis, it's necessary to integrate accelerators and detectors equipment (Field devices) with the system levels (control devices, Controlled system, CERN campus, Physics community, Connected world).

AXIS 2 – Product Life Cycle

The development process shall use a lifecycle management framework that spans from concept (requirements, design, procurement implementation, transition to operation, operation, maintenance/repair upgrade) to decommissioning.

AXIS 3 - Architecture

Services, interfaces and guidelines shall be conceived to allow the Hierarchy and life cycle components to interact with the different functional levels

With a model inspired from RAMI 4.0 CERN shall develop a new "opensource" CERN CPSC (SOA and IOT integrated control system)

CRYOGENIC CONTROL SYSTEM TOMORROW

• Evolution of the present hardware solution adapted to the above concepts;

And specifically for HEP

 Radiation environment specific evolutions for electronics in accelerator tunnel or experiments;

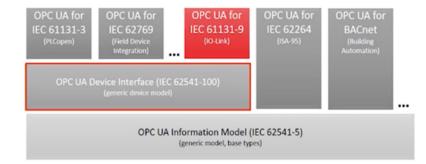
TE-CRG

Marco Pezzetti

• Reducing cabling cost on HEP.

Evolution of the low level device functionalities

Low-level devices used in our systems does not yet integrate complex capabilities such as dynamic discovery, configuration adaption with process conditions , etc. typical from IoT devices.


PTE CRGezzet

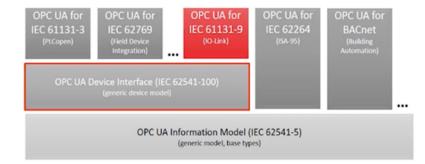
Marco Pezzetti

Evolution of the low level device functionalities

Low-level devices used in our systems does not yet integrate complex capabilities such as dynamic discovery, configuration adaption with process conditions , etc. typical from IoT devices.

However, of the shelves Industrial Control Middleware such as OPC-UA propose IoT compatible devices services (such as IOlink compatible devices) and mediator to interconnect services (configuration, maintenance data exchange, Etc...)

PTE CRGezz


Marco Pezzetti

18th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems

ICALE

Evolution of the low level device functionalities

Low-level devices used in our systems does not yet integrate complex capabilities such as dynamic discovery, configuration adaption with process conditions , etc. typical from IoT devices.

Challenge: Find/develop the middleware compatible with IoT integration

pose IoT compatible devices services (such as IO-link compatible devices) and mediator to interconnect services (configuration, maintenance data exchange, Etc...)

PTE CRGez

Marco Pezzetti

 ICALETCS
 18th Biennial International Conference on Accelerator

 and Large Experimental Physics Control Systems

Evolution of Control Layer Controllers

Evolution of Control Layer Controllers

The LHC PLC have always been the best choice for systems such as Cryogenics, Cooling and Ventilation, Vacuum, thanks to their simple and efficient programming languages (IEC 61131), their high level of availability and reliability. However:

- The present generation is not really compatible with the SOA or with IOT concepts.
- High level programming capabilities to perform parallel equation solving algorithms are missing

Evolution of Control Layer Controllers

The LHC PLC have always been the best choice for systems such as Cryogenics, Cooling and Ventilation, Vacuum, thanks to their simple and efficient programming languages (IEC 61131), their high level of availability and reliability. However:

- The present generation is not really compatible with the SOA or with IOT concepts.
- High level programming capabilities to perform parallel equation solving algorithms are missing

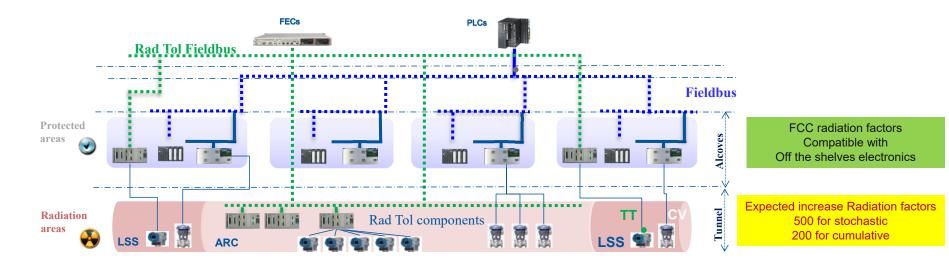
The LHC FEC (Front End Computer) with FESA has brought most missing PLC capabilities. However:

- They do not have the IEC61131 programming languages
- Their reliability is rather poor compared to PLC.

Evolution of Control Layer Controllers

The LHC PLC have always been the best choice for systems such as Cryogenics, Cooling and Ventilation, Vacuum, thanks to their simple and efficient programming languages (IEC 61131), their high level of availability and reliability. However:

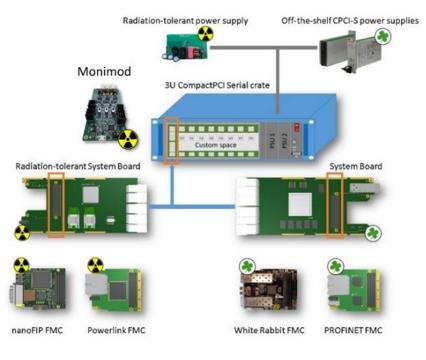
- The present generation is not really compatible with the SOA or with IOT concepts.
- High level programming capabilities to perform parallel equation solving algorithms are missing


The LHC FEC (Front End Computer) with FESA has brought most missing PLC capabilities. However:

- They do not have the IEC61131 programming languages
- Their reliability is rather poor compared to PLC.

Communication with Process Components submitted to radiation

In future colliders, many control components located within the accelerator and experiment tunnel will be submitted to radiation at a harsh level i.e., for FCC an increase by factors of **500** and **200** for the stochastic and the cumulative effect are expected



TE-CRG

Marco Pezzetti

18th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems

LCHIETCS

CERN DIOT Modular solution project:

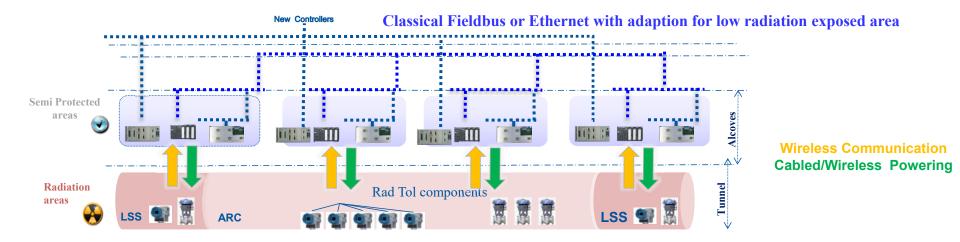
- -For both radiation and free radiation areas
- -Low Cost (if mass scale use..)
- -Extended EoL
- -Universal
- -Several Communication Protocols implemented

TE-CRG

-Different Voltage power supply implemented

18th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems

Marco Pezzetti


18

Communication with Process Components submitted to radiation

Wireless communication and powering from the alcoves to the sensors/actuators.

same type of proposal based on 60GHz wireless CMOS Chips.

ICALETCS

TE-CRG

Marco Pezzetti

19

Conclusion

According to the rupture inducted by the **Cyber Physical Cloud based Control (CPSC)** control paradigms, the development needs to be organised at the laboratory level. CERN control community must be able to address the challenges proposed by the evolution of technologies with strength.

- Profit of the past experiences in our labs or within successful control collaborations;
- Cover all level of the ancient control pyramid but offers all necessary services included in the SOA/IOT approaches;
- Include the CERN infrastructures, accelerators, experimental physic control community and industry to :
 - Federate the efforts to include the technological breakthrough;
 - Not miss any technological rupture that will inevitably happen;
 - Take profit of the fast pace progress observed in the industry;
 - Create condition for trustful and win/win collaboration for all partners.
 - Find the right balance between Open solutions, Solution based on open standards, Off the shelf's components and proprietary solution.

CERN will need to:

- > to keep under control the strategical domains,
- > avoid vendor lock-in issues
- > allow a fair knowledge transfer between partners.

These collaboration frameworks need to start soon in particular for the radiation components and will request a strong management support (and of course the technical team).

TE-CRG

Marco Pezzetti

Conclusion

According to the rupture inducted by the **Cyber Physical Cloud based Control (CPSC)** control paradigms, the development needs to be organised at the laboratory level. CERN control community must be able to address the challenges proposed by the evolution of technologies with strength.

- Profit of the past experiences in our labs or within successful control collaborations;
- Cover all level of the ancient control pyramid but offers all necessary services included in the SOA/IOT approaches;
- Include the CERN infrastructures, accelerators, experimental physic control community and industry to :
 - Federate the efforts to include the technological breakthrough;
 - Not miss any technological rupture that will inevitably happen;
 - Take profit of the fast pace progress observed in the industry;
 - Create condition for trustful and win/win collaboration for all partners.
 - Find the right balance between Open solutions, Solution based on open standards, Off the shelf's components and proprietary solution.

CERN will need to:

- > to keep under control the strategical domains,
- avoid vendor lock-in issues
- > allow a fair knowledge transfer between partners.

Marco Pezzetti

TE-CRG

These collaboration frameworks need to start soon in particular for the radiation components and will request a strong management support (and of course the technical team).

