
DATA-CENTRIC WEB INFRASTRUCTURE FOR CERN RADIATION AND
ENVIRONMENTAL PROTECTION MONITORING

Adrien Ledeul∗, Catalina Cristina Chiriac, Gonzalo de la Cruz, Gustavo Segura, Jan Sznajd
CERN, Geneva, Switzerland

Abstract
Supervision, Control and Data Acquisition (SCADA)

systems generate large amounts of data over time. Analyzing
collected data is essential to discover useful information,
prevent failures, and generate reports. Facilitating access
to data is of utmost importance to exploit the information
generated by SCADA systems.

CERN’s occupational Health & Safety and Environmental
protection (HSE) Unit operates a web infrastructure allowing
users of the Radiation and Environment Monitoring Unified
Supervision (REMUS) to visualize and extract near-real-
time and historical data from desktop and mobile devices.
This application, REMUS Web, collects and combines data
from multiple sources and presents it to the users in a format
suitable for analysis.

The web application and the SCADA system can operate
independently thanks to a data-centric, loosely coupled
architecture. They are connected through common data
sources such as the open-source streaming platform Apache
Kafka and Oracle Rdb. This paper describes the benefits of
providing a feature-rich web application as a complement
to control systems. Moreover, it details the underlying
architecture of the solution and its capabilities.

INTRODUCTION
Radiation protection and environmental monitoring are

fundamental aspects of the CERN Safety Policy. CERN’s
occupational Health & Safety and Environmental protection
(HSE) Unit conducts a program in charge of monitoring the
radiological and environmental impact of the organization.
The aim is to ensure workplace safety for CERN employees
and visitors, minimize the environmental impact of CERN,
and provide regulatory authorities with comprehensive
reports.

In order to achieve these objectives, a geographically
distributed and heterogeneous set of instruments is
continuously measuring the nature and quantity of
ionizing radiations produced by the accelerators, possible
contamination as well as conventional environmental
parameters.

Radiation and Environment Monitoring Unified
Supervision (REMUS) [1], based on WinCC Open
Architecture (WinCC OA) [2] is the Supervision, Control
And Data Acquisition (SCADA) system controlling this
infrastructure. It is accessed from various control rooms
across the Organization and has more than 200 active users.

At the time of writing, REMUS is interfacing 86 different
types of devices. It contains 850 000 tags, manages 120 000
∗ adrien.ledeul@cern.ch

alarms and handles a throughput of 25 000 Input/Output
operations per second. REMUS archives roughly 80 billion
measurements per year.

One of the main challenges of such a system is to provide
comprehensive yet accessible means to extract and exploit
the data. REMUS itself allows users to display a large
variety of synoptic views and control panels designed for the
operation in control rooms. However, such user interfaces
are not the most suitable for data extraction at a higher
level of abstraction, and typically require physical access to
terminals in a protected network.

Two use cases are particularly challenging to handle.
The first one is that CERN radiation and environmental
protection experts are in charge of transforming the data
generated by REMUS system into business-specific reports.
Such reports are used for further internal analysis and to
consolidate CERN’s communication with the host states
and with the general public. The second one is to
provide the CERN’s Fire and Rescue service and other
emergency response teams with access to near-real-time
data on remote terminals. This is particularly useful at
CERN, where installations for environmental monitoring
are geographically scattered. The installation of dedicated
monitoring screens is not always possible at the location
where the access to the data is needed.

This paper describes the approach taken to make radiation
and environmental monitoring data accessible to third party
applications as well as why web technologies were chosen
for the presentation of this data.

A DATA-CENTRIC APPROACH
This section introduces the approach taken for the

consolidation and homogenization of the data layer.

The Data-Centric Manifesto
The data-centric mindset, as opposed to the application-

centric one, considers the data to be the permanent assets,
and the applications the temporary ones. The key principles,
as expressed in the Data-Centric Manifesto [3], can be
summarized as follows:

• Data is the key asset.
• Data is self-describing.
• Data is stored in non-proprietary formats.
• Data access control and security is the responsibility

of the data layer itself.
This approach suits well REMUS use case, as radiation

and environmental protection data must be kept for an
indefinite amount of time, as requested by regulatory
authorities. On the other hand, the applications publishing

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV045

Software Technology Evolution

MOPV045

261

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



and consuming the data change regularly, driven by
technological evolution.

The key point is to think and design the data-set before
designing the applications fulfilling the requirements. The
concepts of a data-centric mindset applied to the CERN
Radiological and Environmental Monitoring System are
illustrated in Fig. 1.

Figure 1: Data-Centric principles applied to REMUS. The
center of the diagram represents all the data associated with
radiation and environmental protection monitoring at CERN.
The external blocks represents applications consuming and
producing data through APIs.

The first steps taken in REMUS towards a data-centric
approach were to consolidate and complete the data layer, as
well as to unify the applications access to the multiple data
sources of the control system through a common API.

REMUS DATA PIPELINE
This section describes the REMUS data flow, from the

instruments to the data layer used by visualization tools.

Overview
REMUS is in charge of the data acquisition of over 5500

measurement channels, generating about 2600 data points
per second in total. The acquired data is processed in parallel
in two different ways, following the Lambda architecture [4].
On the one hand, data is processed in batch for long-term
archiving. On the other hand, data is processed as a stream to
allow immediate and continued exploitation [5]. The aim is
to provide a data layer that can be homogeneously accessed
through a data access API for historical and near-real-time
data queries. The full data pipeline is illustrated in Fig. 2.

Figure 2: REMUS Data Pipeline. Applications consume
data aggregated by the data access API. Data is fetched
from various data sources with different latencies and time
resolutions. Oracle and NXCALS are used for historical
data; Kafka and InfluxDB for near-real-time data.

Batch Processing
REMUS fetches the data buffered in instruments’ internal

memories at a configurable polling interval. This data is
written into files that are then injected in Oracle Rdb’s
partitioned tables using SQL*Loader [6] processes. A subset
of the data is then transferred to the Next CERN Accelerator
Logging Service (NXCALS) [7], based on Hadoop [8],
where it is kept indefinitely at the highest resolution. The
data stored in Oracle Rdb is reduced after two weeks, in
order to guarantee low latency access.

Stream Processing
In parallel to the batch processing, REMUS receives

continuous data streams from the instrumentation. The
streams are transformed by the SCADA and published to a
dedicated Kafka [9] topic using an open-source WinCC
OA Kafka Driver [10], developed and maintained by
CERN’s HSE Unit. The topic is then filtered using Kafka
Streams [11] to eliminate potential malformed messages.
The processed stream is then sent to InfluxDB [12] via Kafka
Connect [13] for temporary data retention.

Data Access API
Environment and Radiation Unified Data Integration

Service (ERUDIS) is a data access API. ERUDIS provides
high-level abstraction of the data sources that can be
consumed by third party applications. The architecture of
this API is based on Akka, an actor concurrency model
framework, and the Alpakka [14] library, designed for
handling data streams. These tools simplify the creation
of interfaces for unifying heterogeneous data sources, as
well as provide means for interactive management of data
streams, such as buffering, advanced error handling and
automatic redundancy mechanisms.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV045

MOPV045C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

262 Software Technology Evolution



REMUS WEB
This section introduces REMUS Web, a web

infrastructure that allows users to visualize and extract
near-real-time and historical data from desktop and mobile
devices. REMUS Web takes advantage of the data pipeline
introduced in the previous section to present the data to the
user in a format suitable for analysis.

Rationale of the Approach
Web Applications Since its invention at CERN,

the World-Wide Web [15] has evolved from a hosting
platform for simple and static hypermedia documents to an
infrastructure for the execution of complex applications [16].
In the last decades web applications became a popular and
widespread solution in the software industry due to the
advantages they present over standalone applications.

From the user’s point of view, web applications are more
accessible. They can be reached through the web browser
and do not require complex installation processes or specific
hardware configurations. Web applications work on any
device capable of running a simple web browser, offering
greater portability and cross-platform access. Furthermore,
the requirements that end-user workstations must satisfy
to run the applications are minimal, since computationally
expensive tasks are delegated to the server.

From the developer’s point of view, maintenance and
update processes of web applications are simpler compared
to standalone applications, since the application only needs
to be deployed on the servers and no intervention is required
on the end-user workstations. Web technologies are the most
widely used and the most mature for the development of
graphical user interfaces (GUI), which facilitates and speeds
up development thanks to the large ecosystem, plugins and
community around web development. In addition, web
technologies are widely spread in the IT industry and it is
easier to recruit professionals with web development skills
than with SCADA and control systems skills. According
to the 2021 Stack Overflow Developer Survey [17], web
developer roles are the most popular on the market.

Progressive Web Applications In recent years the
importance and impact of the web has been increasing.
Most modern software companies base their business
models on offering services through the web. This
has meant the consolidation of the web as a service
platform and the emergence of new web technologies that
have made the line between web applications and native
applications increasingly thin. In this model, cross-platform
compatibility (desktop, mobile, and tablets) is essential to
maximize the reach of the application and to provide the
best user experience.

Progressive Web Applications (PWA) [18] provide users
an experience on par with native applications. PWAs are a
type of web applications that are intended to work on any
platform using a standard-compliant browser, including both
desktop and mobile devices. PWAs take advantage of recent

advancements in web browser technologies such as service
workers [19], web app manifests [20], and caching to bring
features usually associated with native apps. These features
include installability, responsiveness, network independence,
re-engageability, and enhanced security. PWAs offer similar
features to native and hybrid [21] applications, with a
smaller bundle size and fast loading times [22]. Using PWA
can significantly reduce the costs and resources required
for the development and maintenance of a multi-platform
application, since all platforms share the same codebase.

Data Accessibility The aforementioned features solve
several of the challenges posed by accessibility of control
systems’ data. The use of a web application facilitates
remote access to the data generated by the SCADA from
any desktop or mobile device with a standard-compliant
web browser. This is especially useful when operators must
carry out interventions in remote facilities where there is
no access to the control system terminals. Furthermore,
REMUS Web is built as a PWA, allowing operators to
access the data generated by every equipment from their
mobile device. REMUS Web provides QR codes for every
instrument connected to REMUS, which can be printed and
attached to the instruments. In this way, when operators need
to intervene on an instrument, they can access the instrument
data in real time by scanning its QR code. This mechanism
also allows operators in the field to access data from devices
that do not have any integrated display.

Technological Stack
The technologies and tools used in the development of

REMUS Web are listed below. These technologies have
facilitated and accelerated the development of the tool, as
well as improved its maintainability and scalability.

Front-end HTML, CSS and JavaScript are the standard
technologies used for the development and design of web
applications and therefore are the base technologies on which
REMUS Web front-end is built. Additionally, high-level
tools and libraries facilitate application development.

Most modern web applications are built on JavaScript
frameworks for GUI development, which simplify the
application development and maintenance processes.
Currently, there are three major JavaScript frameworks
that dominate the market: React [23], Angular [24], and
Vue.js [25]. These frameworks have different characteristics
and the decision of which one is the best option will
depend largely on the circumstances of the project to be
developed [26].

In the case of REMUS Web, we considered React to
be the preferred option. React is a free and open-source
JavaScript library for building GUIs which is developed
and maintained by Facebook. React is flexible, efficient
and declarative. According to the 2021 Stack Overflow
Developer Survey [17], React is the most commonly used
web framework and the most wanted by developers. At the
performance level, React is fast and light. It offers a similar

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV045

Software Technology Evolution

MOPV045

263

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



performance to that of its direct competitors [27]. Since
React is a UI library and not a complete framework, it offers
a lot of flexibility and freedom to decide the architecture,
tools and libraries used to build the application. Unlike other
frameworks that use their own directives and templating
languages, React’s code is essentially pure JavaScript, which
makes the learning curve shorter.

React has built-in functionalities for state management
that are suitable for simple projects. However, the need for
a more sophisticated state management solution arises as
the complexity of the application increases and it becomes
necessary to share state between different components.
Redux [28] is the most widespread solution and the one used
in REMUS Web. Redux is a predictable state container for
JavaScript applications based on the Flux [29] architectural
pattern.

Since one of the main goals of REMUS Web is to
facilitate the study and analysis of the measured data, the
use of a powerful and flexible charting library is of utmost
importance. To this end, REMUS Web uses Highcharts [30].
Highcharts is a consolidated JavaScript SVG-based multi-
platform charting library. It is flexible, well adapted to
desktop and mobile devices and offers a wide variety of
charts.

Real-time access to SCADA data away from the
central control room is vital to assess and intervene
quickly in critical situations. REMUS Web uses the
WebSocket protocol [31] to establish a full-duplex real-time
communication channel between the client and the server.
In this way, the new data generated by the SCADA system
is streamed to the client with a very low latency.

Back-end REMUS Web back-end is based on Java [32]
and Spring Boot [33]. Spring Boot is an open source,
microservice-based Java web framework. It is an extension
of the well known Spring Framework [34], simplifying the
set-up and configuration of standalone Spring applications
and taking an opinionated view of the Spring platform and
third party libraries to facilitate the development process.

Architecture
Figure 3 shows the architecture of REMUS Web. The

application is deployed on the CERN Platform-as-a-Service
(PaaS) infrastructure, based on RedHat OpenShift [35].
OpenShift is a container orchestration platform optimized for
web applications. It allows building, testing and deploying
web applications without provisioning and maintaining
dedicated servers for each application. OpenShift runs the
applications in Docker [36] containers.

The front-end of the application runs on the users’ web
browser and communicates with the back-end in two different
ways depending on the nature of the information to be
transmitted. WebSockets are used for the transmission of
real-time data such as measurements or alarms. They are also
used to send commands from the client to the server in order
to start, stop or modify the parameters of the transmitted

data flow. The rest of the communication between the client
and the server is done through HTTP [37] requests.

The back-end of the application follows a classic three-
layer architecture. The presentation layer exposes the REST
and WebSocket APIs that the front-end consumes to interact
with the back-end. The business layer contains the domain
logic that drives the core functionalities of the application.
Finally, the data layer is responsible for interacting with
different data sources in order to persist and fetch data.

The data layer is based on Spring Data and ERUDIS.
Spring Data is used to access and modify the data that is
strictly owned by REMUS Web, such as reports, dashboards,
or user preferences. In addition, it is also used to access the
metadata of the SCADA system. On the other hand, ERUDIS
is used to access both the historical and near-real-time data
of the instrumentation connected to REMUS.

Figure 3: REMUS Web Architecture.

Functionalities
This section introduces some of the most important

functionalities that are included in REMUS Web.

Notification Configuration Users can configure
personalized e-mail and SMS notifications based on events
produced by the SCADA. Users can select the notification
sources, the event that triggers the notification (e.g. an
alarm goes on or off) and the notification lifetime.

SCADA Monitoring The application allows the
generation of custom reports to monitor the current and
past status of the SCADA system. It is especially useful for
analyzing incidents and to carry out investigations.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV045

MOPV045C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

264 Software Technology Evolution



Near-real-time Alarm Screen REMUS alarm screen is
accessible directly from the web and displays the generated
alarms in near-real-time. This eliminates the need to connect
to the SCADA remote terminals in order to access the alarm
screen, being accessible from any desktop or mobile device
with internet access.

Near-real-time Trends REMUS Web allows to access
and plot (see Fig. 4) both historical and near-real-time
SCADA data. Users can fetch data from multiple data
sources and define various parameters on the data to select.
These parameters include time period, data resolution, and
filters based on the alarm and fault status or the working
mode of the instrument that generated the measurements.

Figure 4: REMUS Web Trends.

Domain-specific reports REMUS users require
domain-specific reports for radiation and environmental
protection. Such reports are used for internal analysis and
to report to CERN’s host states authorities. REMUS Web
includes tools to generate these reports. Use cases include
the extraction of aggregated radiation data and generation
of the hyetographs (see Fig. 5).

Figure 5: REMUS Web Reports. This screenshot shows a
generated hyetograph, allowing experts to analyse the impact
of rain on water flow rates.

Dashboards REMUS Web includes a powerful tool for
creating and visualizing dashboards. The tool makes a wide
variety of widgets available to users. Users can compose
their own custom dashboards by combining different types of
widgets. The layout and size of the widgets can be modified
using a drag-and-drop interface. In addition, REMUS
Web automatically generates a dashboard for each of the
instruments connected to REMUS. Such dashboards show

real-time data from this particular instrument, its alarms,
and its parameters, as shown in Fig. 6.

Figure 6: REMUS Web Dashboards.

Metadata Statistics REMUS Web allows access to the
complete inventory of REMUS entities such as measurement
channels, instruments, and events. Users can filter the data
using multiple criteria and perform data aggregations to
extract statistics and charts, as shown in Fig. 7.

Figure 7: REMUS Web Statistics.

CONCLUSION
Control Systems’ Human-Machine-Interface went a long

way, from push buttons and wired lamps to modern SCADA
graphical user interfaces. The fast evolution of data
architectures and web technologies is an opportunity to go
one step further in the accessibility of SCADA’s presentation
layer.

CERN’s Radiation and Environmental protection SCADA
extended its data extraction and analysis capabilities,
exploiting a modern data-centric architecture and web
technologies.

ACKNOWLEDGMENT
We would like to thank all the members, past and present,

of the REMUS Project team as well as colleagues from
Radiation Protection, Environment, Beams and Information
Technology groups for their fundamental contribution to the
success of the REMUS Web project.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV045

Software Technology Evolution

MOPV045

265

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



REFERENCES
[1] A. Ledeul, G. S. Millan, A. Savulescu, B. Styczen, and D. V.

Ribeira, “CERN supervision, control and data acquisition
system for radiation and environmental protection,” in
Proceedings of the 12th International Workshop on Emerging
Technologies and Scientific Facilities Controls (PCaPAC’18),
2019, p. 248.

[2] Wincc oa, https://www.winccoa.com
[3] Data-centric manifesto, http://datacentricmanifesto.
org

[4] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja,
“Lambda architecture for cost-effective batch and speed big
data processing,” in 2015 IEEE International Conference on
Big Data (Big Data), IEEE, 2015, pp. 2785–2792.

[5] A. Ledeul, A. Savulescu, G. S. Millan, and B. Styczen,
“Data streaming with apache kafka for cern supervision,
control and data acquisition system for radiation and
environmental protection,” in 17th International Conference
on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’19), 2019.

[6] J. Gennick and S. Mishra, Oracle SQL* Loader: the definitive
guide. ” O’Reilly Media, Inc.”, 2001.

[7] J. Wozniak, C. Roderick, and S. R. WEPHA163, “Nxcals-
architecture and challenges of the next cern accelerator
logging service,” in 17th Int. Conf. on Accelerator and Large
Experimental Control Systems (ICALEPCS’19), New York,
NY, USA, 2019.

[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,
“The hadoop distributed file system,” in 2010 IEEE 26th
symposium on mass storage systems and technologies
(MSST), Ieee, 2010, pp. 1–10.

[9] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed
messaging system for log processing,” in Proceedings of the
NetDB, vol. 11, 2011, pp. 1–7.

[10] Github repository for winccoakafkadrv, https://github.
com/cern-hse-computing/WCCOAkafkaDrv

[11] Kafka streams, https : / / kafka . apache . org /
documentation/streams

[12] Influx db, https://www.influxdata.com
[13] Kafka connect, https://www.confluent.io/product/

connectors
[14] Alpakka, https://doc.akka.io/docs/alpakka
[15] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and

A. Secret, “The world-wide web,” Communications of the
ACM, vol. 37, no. 8, pp. 76–82, 1994.

[16] S. Casteleyn, F. Daniel, P. Dolog, and M. Matera,
Engineering web applications. Springer, 2009, vol. 30.

[17] Stack overflow developer survey 2021, https://insights.
stackoverflow.com/survey/2021

[18] Progressive web apps, https://web.dev/progressive-
web-apps

[19] M. Kruisselbrink, A. Russell, J. Song, and J. Archibald,
“Service workers 1,” W3C, Candidate Recommendation, Nov.
2019. https://www.w3.org/TR/2019/CR-service-
workers-1-20191119/

[20] A. Gustafson, “Web app manifest - application information,”
W3C, W3C Note, Mar. 2021. https://www.w3.org/TR/
2021/NOTE-manifest-app-info-20210324/

[21] A. Khandeparkar, R. Gupta, and B. Sindhya, “An
introduction to hybrid platform mobile application
development,” International Journal of Computer
Applications, vol. 118, no. 15, 2015.

[22] A. Biørn-Hansen, T. A. Majchrzak, and T.-M. Grønli,
“Progressive web apps: The possible web-native unifier for
mobile development,” in International Conference on Web
Information Systems and Technologies, SciTePress, vol. 2,
2017, pp. 344–351.

[23] React, https://reactjs.org
[24] Angular, https://angular.io
[25] Vue.js, https://vuejs.org
[26] E. Wohlgethan, “Supportingweb development decisions by

comparing three major javascript frameworks: Angular, react
and vue. js,” Ph.D. dissertation, Hochschule für Angewandte
Wissenschaften Hamburg, 2018.

[27] S. Krause, Js framework benchmark - round 8, https://
stefankrause . net / js - frameworks - benchmark8 /
table.html

[28] Redux, https://redux.js.org
[29] Flux application architecture, https : / / facebook .

github.io/flux
[30] Highcharts, https://www.highcharts.com
[31] I. Fette and A. Melnikov, The websocket protocol, 2011.
[32] K. Arnold, J. Gosling, and D. Holmes, The Java

programming language. Addison Wesley Professional, 2005.
[33] Spring boot, https://spring.io/projects/spring-

boot
[34] Spring framework, https : / / spring . io / projects /

spring-framework
[35] A. Lossent, A. R. Peon, and A. Wagner, “Paas for

web applications with openshift origin,” in Journal of
Physics: Conference Series, IOP Publishing, vol. 898, 2017,
p. 082 037.

[36] D. Merkel et al., “Docker: Lightweight linux containers for
consistent development and deployment,”

[37] R. Fielding et al., Hypertext transfer protocol–http/1.1, 1999.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV045

MOPV045C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

266 Software Technology Evolution


