THE MIRROR SYSTEM BENCHES KINEMATICS DEVELOPMENT FOR SIRIUS LNLS
G. N. Kontogiorgos, L. M. Santos, L. F. Segalla M. A. L. Moraes, A. Y. Horita

Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil
 AND INNOVATIONS

THE MIRROR SYSTEM BENCHES KINEMATICS DEVELOPMENT FOR SIRIUS LNLS
G. N. Kontogiorgos, L. M. Santos, L. F. Segalla M. A. L. Moraes, A. Y. Horita

Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil

SCIENCE TECHNOLOGY

 AND INNOVATIONSTHE MIRROR SYSTEM BENCHES KINEMATICS DEVELOPMENT FOR SIRIUS LNLS
G. N. Kontogiorgos, L. M. Santos, L. F. Segalla
M. A. L. Moraes, A. Y. Horita

Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil

MINISTRY OF SCIENCE, TECHNOLOGY AND INNOVATIONS

THE MIRROR SYSTEM BENCHES KINEMATICS DEVELOPMENT FOR SIRIUS LNLS

INVERSE KINEMATICS AND DEPLOYMENT WORKFLOW
Applied Newton method
Define an error function \vec{G} where $\vec{u}=\left(R_{x}, R_{y}, R_{z}, U_{x}, U_{y}, U_{y}^{\text {lev }}, U_{z}\right)$:

$$
\vec{G}(\vec{e}, \vec{u}) \triangleq \vec{h}(\vec{e})-\vec{u}
$$

Calculate the Jacobian with respect to the non-linear functions

And finally perform the iterations

$$
\vec{e}_{k+1}=\vec{e}_{k}+\mathcal{J}^{-1}\left(\vec{e}_{k}\right) \vec{G}\left(\vec{e}_{k}, \vec{u}\right)
$$

until the norm off error function is greater than one count (Just inverse case)

$$
\|\vec{G}(\vec{e}, \vec{u})\| \geq 1
$$

PÁTRIA AMMADA B) RASUL

THE MIRROR SYSTEM BENCHES KINEMATICS DEVELOPMENT FOR SIRIUS LNLS

Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil

MINISTRY OF
SCIENCE TECHNOLOGY AND INNOVATIONS

