THPV040

- A collimation system protects the LHC.
- All collimators aligned before each year of operation, using beam-based alignment (BBA).
- Beam Loss Monitors (BLMs) record beam losses generated by collimators as they touch the beam.
- · The alignment relies on classifying between spurious and alignment spikes
- An alignment campaign can produce more than 1000 observation spikes.

NEW MACHINE LEARNING MODEL APPLICATION FOR THE AUTOMATIC LHC COLLIMATOR BEAM-BASED ALIGNMENT

G. Azzopardi*, CERN, Geneva, Switzerland, G. Ricci, Sapienza Università di Roma

Semi-automatic BBA

Since 2011, semi-automatic alignment.

Select collimator

Select BLM threshold to stop jaw moving Collimator moves towards beam Movement stops when threshold exceeded

Collimator aligned? No - repeat, Yes - save

Aligning 40+ collimators requires 4-5 experts.

s		Semi-auto	Fully-auto	250		
	Collimators	75	77	200		
	Total time	2h 31m 59s	49m 17s	150		
	Moving time	58m 13s	18m 14s	100		
	Total alignments	1903	637	50		
	Moving time	38.3 %	38.0 %	~		
	Alignments /Coll	25.37	8.27			

Since 2018, fully-automated using supervised ML to classify spikes.

Fully-automatic BBA

 Fixed waiting time after the collimator stops moving:

4 s @ Ini, 6 s @ FT

- Average of 95 % precision
- Speeds-up alignments by 70 %, from 3 hours to 50 minutes

Injection

Flat top

LSTM-RNN for Spike Classification

- Proposed Solution: LSTM-RNN to continuously classify spikes in • real-time and automatically adjust to spike decay length
- 2973 samples collected from alignments during 2016-2018.
- Input: BLM signal scaled with the collimator position in sigma.
- Results: 10-fold cross-validation randomly stratified 30 times.

Average of 94% precision on testing sets.

- Precision is used to avoid false positives
 - False detection is more grievous than not detecting a spike. 0
- Precision calculated using the classification at end of each sample:
 - A classification score > 50 % classified as alignment spike. 0

LSTM network architecture.

Results & Conclusions

- •
- Factor 4 speed-up compared to the present implementation with supervised ML.
- Aligning the two beams in parallel, resulted in 79 ٠ collimators aligned in 50 minutes at injection
 - 0
- The LSTM is readily available to be incorporated into the alignment software for testing during the LHC Run 3.

	Injection	Flat top	Γ	LSTM	
Start time	1 s	1.5 s		classification latency using	
Mean	1.07 s	1.54 s		the analysis presented.	
Stand. dev.	0.1 s	0.06 s			
Maximum	1.72 s	2.04 s		50%	
Case	Sup	Supervised ML		~50% speed-up LSTM-RNN	
1 coll @ Inj		53.8 s		27.43 s	
+ 1 spurious	spike	69.1 s		33.94 s	
79 colls @ Inj	j 7	70.84 mins		36.12 mins	
+1 spurious s	pike 9	90.98 mins		44.69 mins	
1 coll @ FT		71.8 s		35.8 s	
+1 spurious s	pike	93.1 s		43.72 s	
79 colls @ FT	9	94.53 mins		47.14 mins	
+1 spurious s	pike 12	22.58 mins		57.56 mins	
The average th	The average theoretical minimum time for sequential alignments.				

0.8 80 % till 0.6 Xey 0.4 1.5 s 0.2 Spurious Spike 0.0 Alianment Spike 0 5 6 7 3 4 Latency (s) • Distribution of max. probabilities achieved by the two spike classes and the required latency.

- Alignment spike >= 80 %, then fit exp. func. for ~98.5 % decay.
 - On average already decayed (mean 0.61 s).

BLM signal decay time distributions

- This analysis increased the precision to 98 %.
- - LSTM could theoretically require ~24.56 minutes.

n 0.0.0 www. **ICALEPCS 2021**

Introduction

- A collimation system protects the LHC.
- All collimators aligned before each year of . operation, using beam-based alignment (BBA).
- Beam Loss Monitors (BLMs) record beam losses generated by collimators as they touch the beam.
- The alignment relies on classifying between spurious and alignment spikes.
- An alignment campaign can produce more . than 1000 observation spikes.

Semi-automatic BBA

Since 2011, semi-automatic alignment.

Select collimator

Collimator aligned? No - repeat, Yes - save

Movement stops when threshold exceeded

Select BLM threshold to stop jaw moving

Collimator moves towards beam

Aligning 40+ collimators requires 4-5 experts.

	Semi-auto	Fully-auto	
Collimators	75	77	
Total time	2h 31m 59s	49m 17s	
Moving time	58m 13s	18m 14s	
Total alignments	1903	637	
Moving time	38.3 %	38.0 %	
Alignments /Coll	25.37	8.27	

Fully-automatic BBA

- Since 2018, fully-automated using supervised ML to classify spikes.
- Fixed waiting time after the collimator stops moving:
 - 4 s @ Inj, 6 s @ FT 0
- Average of 95 % precision
- Speeds-up alignments by 70 %, from 3 hours to 50 minutes.

BLM signal decay time distributions.

LSTM-RNN for Spike Classification

- **Proposed Solution:** LSTM-RNN to continuously classify spikes in real-time and automatically adjust to spike decay length.
- 2973 samples collected from alignments during 2016-2018.
- **Input:** BLM signal scaled with the collimator position in sigma.
- **Results:** 10-fold cross-validation randomly stratified 30 times.
 - Average of 94% precision on testing sets.
- Precision is used to avoid false positives
 - False detection is more grievous than not detecting a spike.
- Precision calculated using the classification at end of each sample:
 - A classification score > 50 % classified as alignment spike.

Spike Classification Analysis

Continuous spike classification results at each time step. (i) 1.0 Brobability Probability Probability Alignment Spike Spurious Spike 0.2 0.0 1.5 s 1.5 (ii) Gradient 0.0 0.0 0.2Δ 2 3 7 0 5 6 Time (s)

Results: The LSTM can be used to classify:

- When the probability gradient < 0.2 (requires ~1-1.5 s @ Inj).
- Spurious spike < 80 %, then begin next alignment.
- Alignment spike >= 80 %, then fit exp. func. for ~98.5 % decay.
 - On average already decayed (mean 0.61 s).

Results & Conclusions

- This analysis increased the precision to **98 %.**
- Factor 4 speed-up compared to the present implementation with supervised ML.
- Aligning the two beams in parallel, resulted in 79 collimators aligned in 50 minutes at injection.
 - \circ LSTM could theoretically require ~24.56 minutes.
- The LSTM is readily available to be incorporated into the alignment software for testing during the LHC Run 3.

_	Injection	Flat top		LSTM	
Start time	1 s	1.5 s		classification latency using	
Mean	1.07 s	1.54 s		the analysis presented.	
Stand. dev.	0.1 s	0.06 s		P	
Maximum	1.72 s	2.04 s		500/	
Case	Sup	Supervised ML		~50% speed-up LSTM-RNN	
1 coll @ Inj		53.8 s		27.43 s	
+ 1 spurious s	pike	69.1 s		33.94 s	
79 colls @ Inj	7	70.84 mins		36.12 mins	
+1 spurious sp	oike 9	0.98 mins		44.69 mins	
1 coll @ FT		71.8 s		35.8 s	
+1 spurious sp	oike	93.1 s		43.72 s	
79 colls @ FT	9	94.53 mins		47.14 mins	
+1 spurious sp	pike 12	122.58 mins		57.56 mins	
The average theoretical minimum time for sequential alignn					