Control System Upgrades
Paper Title Page
MOAR01 Modernizing the SNS Control System 21
 
  • K.S. White, K.-U. Kasemir, K. Vodopivec, D.C. Williams
    ORNL, Oak Ridge, Tennessee, USA
  • K.L. Mahoney
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  The Spallation Neutron Source at Oak Ridge National Laboratory has been operating since 2006. An upgrade to double the machine power from 1.4 MW to 2.8 MW is currently underway and a project to add a second target station is in the preliminary design phase. While each project will add the controls needed for their specific scope, the existing control system hardware, software, and infrastructure require upgrades to maintain high availability and ensure the system will meet facility requirements into the future. While some systems have received new hardware due to obsolescence, much of the system is original apart from some maintenance and technology refresh. Software will also become obsolete and must be upgraded for sustainability. Further, requirements for system capacity can be expected to increase as more subsystems upgrade to smarter devices capable of higher data rates. This paper covers planned improvements to the integrated control system with a focus on reliability, sustainability, and future capability.  
slides icon Slides MOAR01 [3.215 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOAR01  
About • Received ※ 11 October 2021       Accepted ※ 03 November 2021       Issue date ※ 18 November 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOAR02 Modernizing Digital Video Systems at the National Ignition Facility (NIF): Success Stories, Open Challenges and Future Directions 26
 
  • V.K. Gopalan, A.I. Barnes, G.K. Brunton, J. Dixon, C.M. Estes, M. Fedorov, M.S. Flegel, B. Hackel, D.J. Koning, S.L. Townsend, D. Tucker, J.L. Vaher
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The National Ignition Facility (NIF), the world’s most energetic laser, completed a multi-year project for migrating control software platforms from Ada to Java in 2019. Following that work, a technology refresh of NIF’s Digital Video (DVID) systems was identified as the next important step. The DVIDs were facing long-term maintenance risk due to its obsolete Window XP platform, with over 500 computers to be individually upgraded and patched, 24 camera types with a variety of I/O interfaces and proprietary drivers/software with their licensing needs. In this presentation, we discuss how we leveraged the strengths of NIF’s distributed, cross platform architecture and our system migration expertise to migrate the DVID platforms to diskless clients booting off a single purpose-built immutable Linux image, and replacing proprietary camera drivers with open-source drivers. The in-place upgrades with well-defined fallback strategies ensured minimal impact to the continuous 24/7 shot operations. We will also present our strategy for continuous build, test, and release of the Linux OS image to keep up with future security patches and package upgrades.
LLNL IM Document Release Number: LLNL-ABS-822092
 
slides icon Slides MOAR02 [0.872 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOAR02  
About • Received ※ 08 October 2021       Revised ※ 14 October 2021       Accepted ※ 11 November 2021       Issue date ※ 28 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOAR03 LOFAR2.0: Station Control Upgrade 31
 
  • T. Juerges, J.J.D. Mol, T. Snijder
    ASTRON, Dwingeloo, The Netherlands
 
  After 10 years of operation, the LOw Frequency ARray (LOFAR) telescope is undergoing a significant hardware upgrade towards LOFAR2.0. The hardware upgrade will enable the phased array telescope to observe at 10-90 MHz and at 120-240 MHz frequencies at the same time. With the upgrade comes also the chance to review LOFAR’s Control System and to make it ready for the next 10 years of operation at the forefront of low-frequency astronomy. In this work we will give a brief overview over the LOFAR telescope with its more than 50 geographically distributed receiver locations (LOFAR Stations), and the software that is necessary to monitor and control every single one of them. We will then describe the Station Control architecture, with its software design and how it is implemented in Python 3 with Tango Controls, OPC-UA clients and deployed as Docker containers. Lastly we will report on the successful use of open stack software like ELK and, Grafana.  
slides icon Slides MOAR03 [8.746 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOAR03  
About • Received ※ 10 October 2021       Revised ※ 18 October 2021       Accepted ※ 03 November 2021       Issue date ※ 06 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV012 The ESRF-EBS Simulator: A Commissioning Booster 132
 
  • S.M. Liuzzo, L.R. Carver, J.M. Chaize, L. Farvacque, A. Götz, D. Lacoste, N. Leclercq, F. Poncet, E.T. Taurel, S.M. White
    ESRF, Grenoble, France
 
  The ESRF-Extremely Brilliant Source (ESRF-EBS)* is the first-of-a-kind fourth-generation high-energy synchrotron. After only a 20-month shutdown, scientific users were back to carry out experiments with the new source. The EBS Simulator (EBSS) played a major role in the success of the commissioning of the new storage ring. Acting as a development, sandbox and training platform, the machine simulator allowed control room applications and tools to be up and ready from day one. The EBSS can also be seen as the initial block of a storage ring digital twin. The present article provides an overview of the current status of the EBS Simulator and presents the current roadmap foreseen for its future.
* J.C.Biasci et al., "A Low-Emittance Lattice for the ESRF.’ Synchrotron Radiation News 27.6 (2014)
 
poster icon Poster MOPV012 [16.447 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV012  
About • Received ※ 29 September 2021       Revised ※ 18 October 2021       Accepted ※ 20 November 2021       Issue date ※ 06 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV013 A Dynamic Beam Scheduling System for the FAIR Accelerator Facility 138
 
  • S. Krepp, J. Fitzek, H.C. Hüther, R. Mueller, A. Schaller, A. Walter
    GSI, Darmstadt, Germany
 
  The new Accelerator Control System for GSI/FAIR is now being used productively for the GSI accelerator facility. As the central component for online beam orchestration, the Beam Scheduling System (BSS) is situated between the FAIR Settings Management System and the FAIR timing system. Besides device settings, the Settings Management System provides timing schedules for beam production. The primary purpose of the BSS is to define which of the beam schedules are executed by the timing system, how often and in which order. To provide runtime decisions in pre-planned execution options (e.g. skipping of a particular beam), it processes external signals like user input, experiment requests or beam prohibits provided by the interlock system. More recently, advanced features have been added that allow for dynamic execution control required by storage ring mode features such as breakpoints, repetitions, skipping and manipulations. This contribution gives an overview of the Beam Scheduling System including its interfaces.  
poster icon Poster MOPV013 [0.366 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV013  
About • Received ※ 10 October 2021       Revised ※ 01 November 2021       Accepted ※ 03 November 2021       Issue date ※ 11 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV014 Upgrade of the NewSUBARU Control System 143
 
  • N. Hosoda, Y. Hamada, M. Ishii, A. Kiyomichi, K. Okada, T. Sugimoto
    JASRI, Hyogo, Japan
  • T. Fukui
    RIKEN/SPring-8, Hyogo, Japan
 
  NewSUBARU has constructed a new dedicated injector in order to separate the operation from SPring-8 and to operate independently. In designing this injector, we tried to share the same components as those of the Tohoku Synchrotron Radiation Facility, which will be completed in 2023, in order to make effective use of human resources. The control system of the injector and the existing storage ring must be constructed as unified system, so the file server, DB server, backbone network, etc. were redesigned using the control system used in SPring-8/SACLA as a control framework. MTCA.4 was used to control the injector, and EtherCAT was used to communicate with the PLC. For the control of the storage ring, the existing equipment configuration was retained and the control framework was migrated. In this paper, we report the details of the NewSUBARU control system.  
poster icon Poster MOPV014 [1.048 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV014  
About • Received ※ 08 October 2021       Revised ※ 17 October 2021       Accepted ※ 24 January 2022       Issue date ※ 28 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV015 Control System of the SRILAC Project at RIBF 147
 
  • A. Uchiyama, M. Fujimaki, N. Fukunishi, Y. Higurashi, E. Ikezawa, H. Imao, O. Kamigaito, M. Kidera, M. Komiyama, K. Kumagai, T. Nagatomo, T. Nakagawa, T. Nishi, J. Ohnishi, K. Ozeki, N. Sakamoto, K. Suda, T. Watanabe, Y. Watanabe, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • A. Kamoshida
    National Instruments Japan Corporation, MInato-ku, Tokyo, Japan
  • K. Kaneko, R. Koyama, T.O. Ohki, K. Oyamada, M. Tamura, H. Yamauchi, Y.A. Yusa
    SHI Accelerator Service Ltd., Tokyo, Japan
 
  At RIKEN Nishina Center, the SRILAC project has been launched for the search experiments of super-heavy-elements with atomic numbers of 119 and higher. The main points of the SRILAC project are as follows. Superconducting RIKEN Linear Accelerator (SRILAC) was newly installed at downstream of existing accelerator (RIKEN Linear Accelerator: RILAC) to enhance beam energy. Additionally, a new RIKEN 28-GHz superconducting electron cyclotron resonance ion source has been implemented at the frontend of SRILAC to increase beam intensity. With that, the SRILAC control system requires corrections and upgrades to the shortcomings of previous RILAC control system, for example control methods for electromagnet power supplies, an machine protection system and an archive system. Moreover, there was also a issue to be solved for methods of integration with small LabVIEW-based systems. To operate efficiently in the SRILAC project, a distributed control system utilizing EPICS should be adopted as in RIBF, a higher-level application protocol needs to be integrated to EPICS Channel Access protocol. In this conference, we report the system implementation, developed tool in detail about SRILAC project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV015  
About • Received ※ 13 October 2021       Revised ※ 22 October 2021       Accepted ※ 25 February 2022       Issue date ※ 05 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV016 Design and Implement of Web Based SCADA System for HUST Field-Reversed Configuration Device 153
 
  • F.Y. Wu, Y.X. Jiang, W.S. Wang, X.H. Xie
    HUST, Wuhan, People’s Republic of China
  • S. Li, B. Rao, Y. Yang, M. Zhang, P.L. Zhang, W. Zheng
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  As a large complex fusion research device for stud-ying field reversed configuration (FRC) plasma, HUST FRC(HFRC) is composed of many subsystems. In order to coordinate all systems and ensure the correct, orderly and stable operation of the whole experimental device, it is very important to have a unified and powerful control system. HFRC SCADA(Supervisory Control And Data Ac-quisition) system has selected the in-house developed CFET’Control system Framework for Experimental Devices Toolkit’as the control framework, with ad-vantages of strong abstraction, simplified framework, transparent protocol and flexible extension due to Web technology.  
poster icon Poster MOPV016 [1.062 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV016  
About • Received ※ 09 October 2021       Revised ※ 16 October 2021       Accepted ※ 09 February 2022       Issue date ※ 23 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV017 CERN SCADA Systems 2020 Large Upgrade Campaign Retrospective 156
 
  • L.G. Goralczyk, A.F. Kostopoulos, B. Schofield, J-C. Tournier
    CERN, Geneva, Switzerland
 
  In this paper we report the experience from a large-scale upgrade campaign of SCADA control systems performed during the second LHC Long Shutdown at CERN. Such periodical upgrades are dictated by the ever evolving SCADA WinCC OA system and the CERN frameworks evolution used in those control systems. These upgrades concern: accelerator control systems, e.g. quench protection system, powering interlocks, magnet alignment; control systems devoted to accelerator facilities such as cryogenics, vacuum, gas… and other global technical infrastructure systems as well as the CERN electrical distribution system. Since there are more than 200 SCADA projects covering the CERN accelerator complex and technical infrastructure, any disruption requires careful coordination, planning and execution with process owners. Having gained experience from previous campaigns and reaching a new level of automation we were able to make visible improvements by shortening the required time and reducing the personnel required. Activities, lessons learned and further improvements are presented as well as a comprehensive statistical insight of the whole campaign.  
poster icon Poster MOPV017 [4.222 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV017  
About • Received ※ 09 October 2021       Revised ※ 14 October 2021       Accepted ※ 04 November 2021       Issue date ※ 18 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV018 Linac-200 Gun Control System: Status and Plans 161
 
  • M.A. Nozdrin, V.V. Kobets, V.F. Minashkin, A. Trifonov
    JINR, Dubna, Moscow Region, Russia
 
  Due to the development of the global Tango-based control system for Linac-200 accelerator, the new electron gun control system software was developed. Major gun electronics modification is foreseen. Current gun control system status and modification plans are reported.  
poster icon Poster MOPV018 [1.308 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV018  
About • Received ※ 09 October 2021       Revised ※ 19 October 2021       Accepted ※ 04 November 2021       Issue date ※ 03 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV019 PVEcho: Design of a Vista/EPICS Bridge for the ISIS Control System Transition 164
 
  • K.R.L. Baker, I.D. Finch, G.D. Howells, M. Romanovschi, A.A. Saoulis
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: UKRI / STFC
The migration of the ISIS Controls System from Vsystem to EPICS presents a significant challenge and risk to the day-to-day operations of the accelerator. An evaluation of potential options has indicated that the most effective migration method to mitigate against this risk is to make use of a ‘hybrid’ system running Vsystem and EPICS simultaneously. This allows for a phased porting of controls hardware from the existing software to EPICS. This work will outline the prototype Vsystem/EPICS bridge that will facilitate this hybrid operation, referred to as pvecho. The bridge has been developed in Python, utilising existing communication from Vsystem to an MQTT broker developed as part of a previous project. Docker containers have been used for its development to create an isolated test environment to allow the software to communicate with other services currently used at ISIS.
 
poster icon Poster MOPV019 [1.528 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV019  
About • Received ※ 08 October 2021       Accepted ※ 04 November 2021       Issue date ※ 08 January 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV020 Digitisation of the Analogue Waveform System at ISIS 169
 
  • W.A. Frank, B.R. Aljamal, R.A. Washington
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: UKRI/STFC
The Analogue Waveform System (AWS) at the ISIS Neutron and Muon Source is a distributed system that allows operators to select and monitor analogue waveforms from equipment throughout the facility on oscilloscopes in the Main Control Room (MCR). These signals originate from key accelerator systems in the linear accelerator and synchrotron such as the ion source, magnets, beam diagnostics, and radio frequency (RF) systems. Historical data for ISIS is available on the control system for many relevant channels. However, at present, to avoid disrupting the oscilloscope displays in the MCR, only an hourly image capture of the AWS waveforms is stored. This is largely inadequate for potential data-intensive applications such as anomaly detection, predictive maintenance, post-mortem analysis, or (semi-)automated machine setup, optimization, and control. To address this, a new digital data acquisition (DAQ) system is under development based on the principle of large channel count, simultaneous DAQ. This paper details the proposed architecture of the system and the results of initial prototyping, testing, and commissioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV020  
About • Received ※ 08 October 2021       Revised ※ 21 October 2021       Accepted ※ 16 December 2021       Issue date ※ 04 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV021 Upgrading the National Ignition Facility’s (NIF) Integrated Computer Control System to Support Optical Thompson Scattering (OTS) Diagnostic 173
 
  • A.I. Barnes, A.A.S. Awwal, L. Beaulac, B. Blackwell, G.K. Brunton, K. Burns, J.R. Castro Morales, M. Fedorov, R. Lacuata, R.R. Leach, D.G. Mathisen, V.J. Miller Kamm, S. Muralidhar, V. Pacheu, Y. Pan, S. Patankar, B.P. Patel, M. Paul, R. Rozenshteyn, R.J. Sanchez, S. Sauter, M. Taranowski, D. Tucker, K.C. Wilhelmsen, B.A. Wilson, H. Zhang
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
With the ability to deliver 2.1 MJ of 500 TW ultraviolet laser light to a target, the National Ignition Facility (NIF) is the world’s most energetic laser. This combination of energy and power allows the study of materials under conditions similar to the center of the sun. On fusion ignition experiments, plasma generated in the interior of the target shell can detrimentally impact the implosion symmetry and the resulting energy output. We are in the final stages of commissioning a significant new diagnostic system that will allow us to better understand the plasma conditions and improve our symmetry control techniques. This Optical Thompson Scattering (OTS) system consists of two major components: a probe laser beamline capable of delivering a world first 1 J of energy at 211 nm, and a diagnostic that both reflects the probe laser into the target and collects the scattered photons. Between these two components, the control system enhancements required integration of over 450 components into the existing automation suite. This talk will provide an overview of the system upgrade approach and the tools used to efficiently manage and test changes to both our data and software.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV021  
About • Received ※ 09 October 2021       Accepted ※ 10 February 2022       Issue date ※ 21 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV022
Upgrade of Hardware Controls for the STAR Experiment at RHIC  
 
  • D. Tlusty
    Creighton University, Omaha, NE, USA
 
  The STAR experiment has been delivering significant physics results for more than 20 years. Stable operation of the experiment was achieved by using a robust controls system based on the Experimental Physics and Industrial Control System (EPICS). Now an object-oriented approach with Python libraries, adapted for EPICS software, is going to replace the procedural-based EPICS C libraries previously used at STAR. Advantages of the new approach include stability of operation, code reduction and straightforward project documentation. This poster will introduce the STAR experiment, give an overview of the EPICS architecture, and present the use of Python for controls software. Specific examples, as well as upgrades of user interfaces, will be shown.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAR01 Upgrade of the CMS ECAL Detector Control System During the CERN Large Hadron Collider Long Shutdown II 297
 
  • L. Marchese, D.R.S. Di Calafiori, G. Dissertori, L. Djambazov, R. Jiménez Estupiñán, W. Lustermann
    ETH, Zurich, Switzerland
 
  As part of the Compact Muon Solenoid (CMS) experiment, the Electromagnetic Calorimeter (ECAL) Detector Control System (DCS) is undergoing a large software and hardware upgrade during the second long shutdown (LS2) of the CERN Large Hadron Collider (LHC). The DCS software running under the WinCC Open Architecture (OA) platform, required fundamental changes in the architecture as well as several other upgrades on the hardware side. The extension of the current long shutdown (2019-2021) is offering a unique opportunity to perform more updates, improve the detector safety and robustness during operations and achieve new control features with an increased modularity of the software architecture. Starting from the main activities of the ECAL DCS upgrade plan, we present the updated agenda for the LS2. This covers several aspects such as the different software migrations of the DCS, the consolidation of toolkits as well as some other improvements preceding the major ECAL upgrade foreseen for the next long shutdown (2025-2026).  
slides icon Slides TUAR01 [1.966 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUAR01  
About • Received ※ 10 October 2021       Revised ※ 20 October 2021       Accepted ※ 30 November 2021       Issue date ※ 22 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAR02
The Phase-1 Upgrade of the ATLAS Level-1 Calorimeter Trigger  
 
  • A.G. Kazarov
    PNPI, Gatchina, Leningrad District, Russia
  • T. Mkrtchyan
    KIP, Heidelberg, Germany
 
  The ATLAS level-1 calorimeter trigger (L1Calo) is a hardware-based system that identifies events containing calorimeter-based physics objects, including electrons, photons, taus, jets, and missing transverse energy. In preparation for Run 3, when the LHC will run at higher energy and instantaneous luminosity, L1Calo is currently implementing a significant programme of planned upgrades. The existing hardware will be replaced by a new system of FPGA-based feature extractor (FEX) modules, which will process finer-granularity information from the calorimeters and execute more sophisticated algorithms to identify physics objects; these upgrades will permit better performance in a challenging high-luminosity and high-pileup environment. This talk will introduce the features of the upgraded L1Calo system and the plans for production, installation, and commissioning. In addition, the expected performance of L1Calo in Run 3 will be discussed.  
slides icon Slides TUAR02 [1.741 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAR03 The Control System of the Linac-200 Electron Accelerator at JINR 302
 
  • A. Trifonov, M. Gostkin, V.V. Kobets, M.A. Nozdrin, A. Zhemchugov, P.P. Zhuravlyov
    JINR, Dubna, Moscow Region, Russia
 
  The linear accelerator Linac-200 at JINR is constructed to provide electron test beams with energy up to 200 MeV to carry out particle detector R&D, to perform studies of advanced methods of beam diagnostics, and to work as an irradiation facility for applied research. While the accelerator largely reuses refurbished parts of the MEA accelerator from NIKHEF, the accelerator control system is completely redesigned. A new distributed control system has been developed using the Tango toolkit. The key subsystems of the accelerator (including focusing and steering magnets control, vacuum control system, synchronization system, electron gun control system, precise temperature regulation system) were redesigned or deeply modernized. This report presents the design and the current status of the control system of the Linac-200 machine.  
slides icon Slides TUAR03 [1.449 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUAR03  
About • Received ※ 10 October 2021       Revised ※ 16 October 2021       Accepted ※ 22 December 2021       Issue date ※ 27 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)