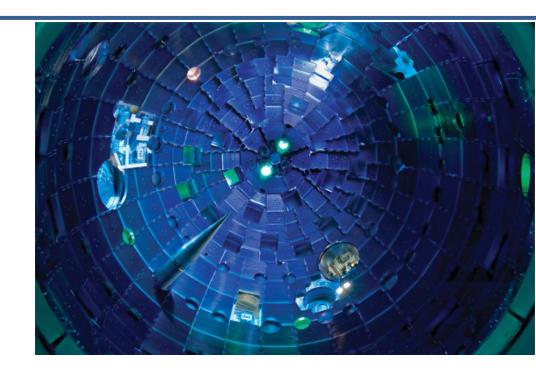
MODERNIZING DIGITAL VIDEO SYSTEMS AT THE NATIONAL IGNITION FACILITY (NIF): SUCCESS STORIES, OPEN CHALLENGES AND FUTURE DIRECTIONS

18th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2021)


14-22 October 2021

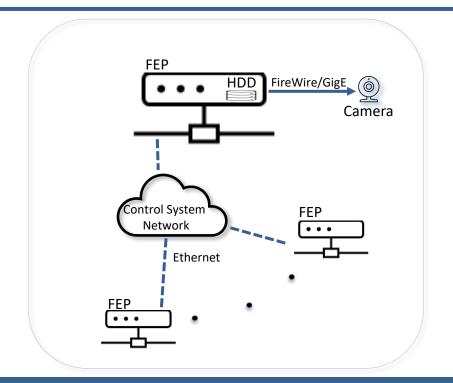
Vinod Gopalan NIF Integrated Computer Control System (ICCS)

MODERNIZING DIGITAL VIDEO SYSTEMS (DVIDs)

- Introduction to DVIDs
- The Maintenance Challenge
- Potential Mitigation Strategies
- Modernized DVID Architecture
- Verification and Deployment
- Future Directions

How do we solve the long-term maintenance risk of DVIDs?

Introduction to DVIDs – DVID's Role in NIF Control Systems

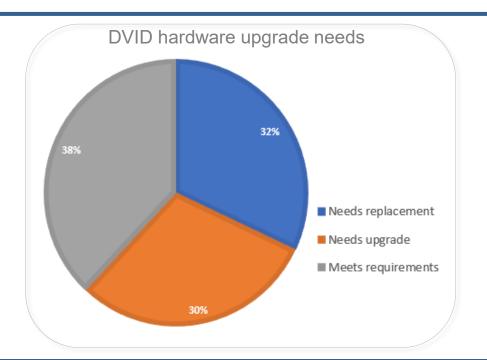


- Participate in automatic loops
 - e.g., automatic alignment
- Provide critical diagnostics to study the laser
- Allows operators to observe the state of the system in real time
- Spatial measurements of optical wavefront
- Optics inspection
- And many more ..

DVIDs are an integral part of the NIF control system.

Maintenance Challenge – Large number of legacy systems

- DVID FEPs (Front End Processor) run an obsolete Windows XP OS
 - Unsupported, no security patches
 - Cannot be installed in newer computer hardware
- 500+ FEPs
 - 500+ Windows OS Images
 - Need to be individually upgraded and patched.
 - Each FEP boots from hard disk drive
 - 500+ Hard Disks
 - A significant point of failure (high MTBF)



DVIDs' operating system is obsolete and needs replacement.

Maintenance Challenge – Aging Computer Hardware

- Different generations of machines
 - Need to ensure that modern OS can be installed
- Replace/Upgrade
 - Upgrade RAM
 - Replace with newer machine

Many DVID computers need replacement or upgrade to support modern operating systems.

Maintenance Challenge - Many camera types

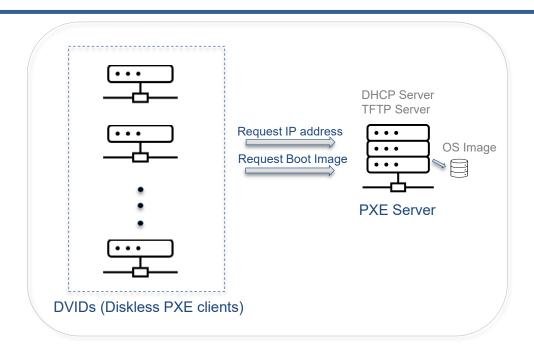
- Different control applications require different camera types
 - Image resolution, streaming frame rates
 - Radiation / vibration tolerance
- Each camera type comes with its associated drivers/software
 - Multiple drivers / libraries
- Proprietary software licensing schemes
 - Node locked, hardware dongles, built into camera

Interface	No. of FEPs	Camera Manufactur ers	Camera Models	
FireWire	487	4	7	
GigE	318	4	15	
Analog- FireWire	110	1	1	
Analog- PCle	2	1	1	

It is difficult to maintain multiple drivers, libraries and licenses for each camera type – need a way to consolidate.

Potential Mitigation Strategies

- Overall upgrade strategy
 - In-Place incremental upgrade
 - Proven method with prior success
- OS Upgrade / Replacement
 - Windows options
 - Windows 7/ Windows 10
 - Multiple image problem remains
 - Linux options
 - Diskless Gentoo OS
 - A proven baseline implementation exists
 - RHEL, Debian or other distros
 - Significant effort to build a custom image


- Camera Drivers / Software
 - Proprietary
 - Manufacturer / 3rd party software vendor
 - Consolidated option not available / license costs
 - Opensource
 - Optimal approach: One driver per interface standard
- Camera Maintenance Tools
 - Test tools were available with proprietary camera software
 - Moving to opensource will require integrating alternative opensource tools

There are multiple upgrade strategies with associated pros and cons.

Modernized Architecture – Network booting Linux OS

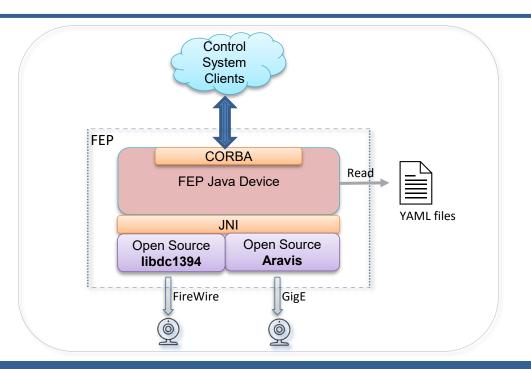
- Gentoo based FEP OS
 - Built on top of existing Diskless VME FEP OS
 - v4.14 LTS Kernel
- Network booting
 - Implemented using PXE, DHCP and TFTP.
- Single image hosted by the TFTP server
 - All DVIDs boot from the same image
 - DVIDs do not need an HDD (diskless)
- Deploying a new OS image is simplified
 - Deploy new OS image to the PXE server
 - Reboot DVIDs

The diskless DVIDs network boot from a single Linux OS image solving the multiple image and HDD maintenance problem.

Modernized Architecture – FEP software

Camera driver / library

FireWire: libdc1394


GigE: Aravis

FEP Java implementation

- Text based camera description file (YAML)
- Generic architecture
- Easy to add new cameras

Performance considerations

- CPU
 - Intel's Integrated Performance Primitives (IPP)
- Network
 - Performance network driver availability

Generic FEP implementation based on open-source camera drivers provides a clean and performant solution

Verification and Deployment - Streaming Performance

- Extensive measurement of streaming performance
 - Multiple camera types
 - Multiple FEP machine types
- Optimizations to fix performance
 - Buffer size, packet size
 - Compression

_	configuration				measured*	diff from
host				fps	fps	windows
PixeLINK 959G on Linux FEP, Dell R200)	1600 x 1200	ON	16	4	4	0.14
				5	5	0.35
				6	6	1.04
				7	6.93	1.07
				8	6.92	0.61
				9	6.833	0.433
	1600 x 1200	ON	8	10	8.8	-0.77
				11	8.75	-1.49
				12	8.58	-1.54
				13	8.6	-1.68
				14	8.55	-2.28
	1600 x 1200	OFF	16	4	3.95	0.92
				5	4.77	1.89
				6	5.22	2.32
				7	5.4	2.47
				8	7.54	4.68
				9	7.61	4.78
	1600 x 1200	OFF	8	10	9.46	3.63
				11	10.24	4.49
				12	10.78	4.99
				13	11.55	5.82
				14	13.16	7.33

Performance measurements assured that the converted system meets of exceeds the original performance.

Verification and Deployment

Test environments

- Dev, Int, QA
 - Replica of production DVIDs
 - · Testing, dry-run of conversions.
- Manual and automated tests

Deployment procedures

- Multiple teams involved
- Short time window
- Detailed procedure documentation

Revert strategy

- Windows Disk/Image retained as fallback
- Removing DHCP config for a DVID automatically reverts to Windows disk boot

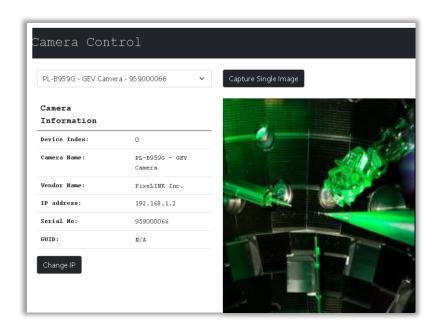
Status of deployments to NIF

- Diskless Linux solution successfully deployed to DVIDs in NIF
- Proven reliable operation in the NIF's 24x7 control system
- Successfully accomplished technology refresh of DVIDs, effectively solving the long-term maintenance challenge.

Verification in offline environments assured success at production deployments

Future Directions

Diskless Gentoo OS roadmap


- Continuous integration
 - Faster rate of release and quicker fault isolation.
- Semiannual releases

Diskless Video FEP enhancements

- More cameras per FEP
- Support for other interface types
 - Analog-PCle, Analog-Firewire

Camera Maintenance GUI Tools

- DVIDs provide a RESTful API
- Secure access to camera controls
- Web application uses the API service

Long term maintenance risk is solved, but opportunities for further improvements exist

