
PVEcho: DESIGN OF A Vista/EPICS BRIDGE FOR THE ISIS CONTROL
SYSTEM TRANSITION

K.R.L. Baker∗, I.D. Finch, G.D. Howells, A. Saoulis,
ISIS Neutron and Muon Source, Didcot, United Kingdom

M. Romanovschi, University of Manchester, United Kingdom

Abstract
The migration of the ISIS Accelerator Controls System

from Vsystem to EPICS presents a significant challenge
and risk to the day-to-day operations of the accelerator. An
evaluation of potential options has indicated that the most
effective migration method to mitigate against this risk is to
make use of a ‘hybrid’ system running Vsystem and EPICS
simultaneously. This allows for a phased porting of controls
hardware from the existing software to EPICS. This work
will outline the prototype Vsystem/EPICS bridge that will
facilitate this hybrid operation, referred to as PVEcho. The
bridge has been developed in Python, utilising existing com-
munication from Vsystem to an MQTT broker developed
as part of a previous project. Docker containers have been
used for its development to create a test environment that al-
lows the software to communicate with other active services
currently used at ISIS.

INTRODUCTION
The ISIS Neutron and Muon Source [1] has been op-

erated using Vista Control Systems’ commercial product
Vsystem [2], colloquially referred to as Vista, since 1998.
Recently, a study was undertaken to evaluate its use against
that of the Experimental Physics and Industrial Control Sys-
tem [3] (EPICS) at ISIS. The study determined that the
control system should be migrated to EPICS [4]. One of the
key benefits of the migration will be to promote collabora-
tion with other facilities at Rutherford Appleton Laboratory,
such as ISIS Instrumentation [5], Central Laser Facility [6]
and Diamond Light Source [7], also using EPICS.

In order to minimise the impact on business-as-usual at
the facility, a phased porting of control of hardware is the de-
sired option for the transition. This requires the development
of bridging software that will map approximately 33,000
channels that exist in Vsystem to an equivalent EPICS Pro-
cess Variable (PV). This will allow a progressive migration
of the operator control screens in the main control room
(MCR) alongside a gradual transition of hardware without
interrupting operator control. The current control screens
are produced using Vsystem’s Vdraw [8] tool but will be
migrated to screens created using CS-Studio Phoebus [9] as
part of the transition. Phoebus is the suite of applications
that can be used to display screens as well as probe EPICS
PVs.

The use of a bridge also elegantly permits some legacy
hardware that cannot be converted to EPICS to still be run
∗ k.baker@stfc.ac.uk

using Vsystem but using Phoebus control screens. PVEcho
will serve as this bridge, responsible for replicating the be-
haviour of the current control system in EPICS.

PVEcho
Each component of hardware that comprises the acceler-

ator controls system is associated with a group of unique
channels through which value changes in the hardware can
be communicated. During the migration, we will need to
exactly replicate each of these channels that currently oper-
ate through Vsystem as an equivalent EPICS PV, including
their value, alarm and display configuration. Each Vsystem
channel and corresponding mirrored EPICS PV needs to be
kept synchronised. This in turn will allow the control system
to operate with either the Vsystem channel or the EPICS PV
acting as the source of truth.

In the early stages of the transition, the majority of chan-
nels will still be operated through Vsystem while long-term
EPICS equivalents are being developed. In this case, the
source of truth will be the Vista channels and changes in
their values and alarm limits will be broadcast from Vista
to EPICS, handled by the vistatoepics (v2e) program. Once
the control of hardware of specific channels has been ported
to EPICS, the source of truth will transfer. Now, changes
to the PV will be monitored and transferred from EPICS to
Vista via MQTT [10] messages. This is handled by the epic-
stovista (e2v) program. The vistatoepics and epicstovista
applications work in tandem to make up the PVEcho bridge,
a visual representation of which can be seen in Fig. 1. The
long-form names are used for descriptions of the applica-
tions, while the shorthand versions (v2e and e2v) are used
for simplicity in the codebase and in diagrams. More details
about the individual programs will be given in subsequent
sections of this paper.

To track which channels have Vista or EPICS representing
their true value, we have created a PVMonitor utility class
to use in both programs. A list of channels to monitor are
defined in a file which the PVMonitor regularly checks for
changes (in our case once per second). When a change is
noted, the monitor determines which channels have been
added or removed relative to the file’s previous state, and
starts or stops tracking those channels accordingly. This
method allows a lot of control and flexibility over the chan-
nels to be replicated in EPICS, allowing the transition of
individual channels at a time. As the same class is used
in both applications, “channel” may be substituted for PVs
when referring to epicstovista, where the same approach is
used.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV019

MOPV019C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

164 Control System Upgrades



Figure 1: An overview of how PVEcho will integrate into the ISIS Accelerator Control System. VSystem will remain
operating on OpenVMS, while newer systems and EPICS will operate on Linux, with the MCR running Phoebus [9] screens
through Windows. Arrows in dark blue represent the flow of data from a Vsystem channel through to EPICS (v2e). They
also indicate the Updater classes that parse incoming data. Dotted lines indicate an initialization step in the creation of
PVs. Arrows in red follow the flow of information from EPICS to Vsystem (e2v). PVEcho interfaces to Vsystem through a
Mosquitto MQTT broker [10] and the vista_mqtt service [11].

Both vistatoepics and epicstovista components of PVEcho
will leverage the MQTT messaging service linked to Vista,
named vista_mqtt, set up as part of a previous project within
the ISIS controls group [11]. The vista_mqtt service in-
terfaces to Vsystem through topics associated with each
Vsystem channel. When a value in Vista changes, the appli-
cation (originally developed in Python but being migrated to
C++) generates an MQTT message with the updated value
and sends it to a read-only “values” topic associated with
the channel. If a message is published to the channel’s “set”
topic, the application triggers a Vsystem set command to
change the value of the channel within the control system.
Vistatoepics will make use of the former, read-only case,
while epicstovista will utilise the writable topics.

By subscribing to the MQTT value topic associated with a
Vsystem channel we can monitor changes to its value through
the clients and callbacks available in MQTT’s python li-
brary [12]. The changes are then echoed to EPICS through
vistatoepics. Similarly, we track changes to the EPICS PVs
through pvapy’s [13] Channel client and we set the value
of its corresponding channel in epicstovista by publishing a
message to the channel’s set topic in MQTT.

The programs will also exploit the CouchDB [14] database
set up by the group to store metadata associated with each
Vsystem channel. The database stores information such as
the channel type (e.g. integer, float, boolean, string) and dis-
play formatting, as well as alarm type and limits if applicable.

In the case of vistatoepics, this information is used to define
the structure of the PV to be created. In both programs it is
also used to define how to parse incoming values to a format
appropriate for the system where it will be echoed, based on
the channel’s type.

VISTA TO EPICS (V2E)
The PVEcho bridge is designed to replicate the entire

Vista control system, rather than individual devices that usu-
ally constitute a distributed control system. This places a
focus on the ability to dynamically add, remove or edit PVs
on the server created to host the replica PVs without having
to restart the program, which would interrupt operation of
the accelerator. Therefore, a PVAServer from the pvapy
library was favoured over the traditional IOC for the vista-
toepics component of PVEcho. On running the vistatoepics
program, the configuration that dictates the services to con-
nect to and the necessary files to be read into memory is
loaded and parsed. In this case, files include a record of the
CouchDB entries containing the metadata for the Vsystem
channels, the mappings of reference channels to their setter
channels and the list of PVs to monitor. The benefit of using
this approach is that we can tailor our configuration file for
production or development and testing purposes.

Once all of the relevant classes have been instantiated, we
enter the main loop of the program. It continuously checks

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV019

Control System Upgrades

MOPV019

165

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



the monitor file for changes, acts accordingly for the PVs
that have been added or removed from the list and then goes
on to check for any changes to CouchDB. This continuously
runs until the program is interrupted, as illustrated by Fig. 2.

Initialisation
On start-up and initialization of the vistatoepics compo-

nent of PVEcho, a snapshot of the existing configuration
for each of the channels on Vsystem is captured using the
ISIS CouchDB database. The channel metadata (such as
the display and alarm configuration) associated with each
channel in the monitor list is then translated into a format
appropriate for EPICS.

Monitoring
Once the PVs have been created on the server, changes

to their value and metadata are tracked through three differ-
ent avenues: MQTT topic messages from Vista, CouchDB
updates and EPICS pvput commands. Each source pro-
duces updates in a different json format so a fleet of cus-
tomised ‘Updater’ classes are used to manipulate the data
from the raw input into a structure appropriate for use with
the pvapy PvObject.set() method which is used to ap-
ply the changes to the PV. The PV is then updated on the
server so that changes are visible to EPICS clients such as
Phoebus [9] control screens.

1. MQTT
As described previously, once a PV has been created,
we subscribe to the original channel’s corresponding
MQTT topic, published from Vsystem, which tracks
changes to the PV’s value.

2. CouchDB
CouchDB shadows the Vsystem databases for each
channel so it acts as a source of truth for the channel
metadata that is not accessible through MQTT. To keep
PVs consistent with their channel, we track changes to
Vsystem database files through alterations to CouchDB
using the CouchDB Python client [15] and modify the
PV’s metadata to match the updated values from Vista.

3. pvput
PV values and metadata may also be changed by the
operators through pvput commands using Phoebus
control screens. As we are using custom classes that
inherit from the original pvapy PvObject class for
different channel types, when an update comes through
we need to ensure that our object is updated correctly
on the server.

Alarm Management
The vistatoepics component of PVEcho is also responsible

for mirroring the current alarm management in Vsystem.
Implementing the alarms from the outset will allow us to
start using EPICS alarm handling and monitoring software
throughout the transition, as well as minimise operational
changes for the crew. The mapping of range and binary

match alarms is relatively straightforward as EPICS defines
these alarm types natively. Vsystem also offers the option of
integer match and reference alarms [16], which do not have
a corresponding native type in EPICS.

An example of where an integer match alarm might
exist is a pump that operates in multiple modes.
These could include pump operating states such as
0=off, on=1, 2=fault, 3=standby, 4=turbo,
where only state 2 should trigger an alarm.

A reference alarm is a channel where the alarm limits
are determined by the value of a different Vsystem channel
according to some calculation. The channel that dictates the
reference channel’s alarm limits is referred to as its “setter”
channel. The alarm limits are recalculated for the reference
channel whenever the value of the setter channel changes.

In order to replicate Vsystem as closely as possible within
EPICS, the logic behind the Vista alarms has been imple-
mented manually within the Updater classes. This was
primarily possible because of the freedom of control over
alarms that the pvapy library allows as well as the availabil-
ity of the alarm definitions (for example type, limits, setter
channel) for each channel in CouchDB.

• Range With each new update to the value or the meta-
data, the current value is compared to the most recent
alarm limits to determine its alarm state, either MAJOR,
MINOR or NO ALARM.

• Binary Match The alarm state is set to raise a major
alarm if the current value matches that of the defined
alarm match value.

• Integer Match The alarm state for integer match alarms
is determined by comparing the value of the PV with
its highAlarmLimit. On initialisation, this and all the
other limits are set to be equal to the alarm match value
from Vsystem. To circumvent the issue where a user
could change the value of the match alarm through
one of the other limits (e.g. lowAlarmLimit), a cus-
tom function has been devised and implemented in the
PvPutUpdater (seen in Fig. 1), whereby if the value
of any of the alarm limits is changed on a match alarm
PV, all of the alarm limits are modified to equal the
updated value. We use the same approach to update
the severity of the match alarm.

• Reference A mapping of reference alarm PVs and their
setter channels are stored in memory. Whenever a PV
updates, a check is performed to see whether the chan-
nel is a setter. If so, all of its reference channels are
also updated to reflect the new limits and their alarm
state is recalculated with the new limits.

EPICS TO VISTA (E2V)
As previously mentioned, currently the ISIS control

screens are created and run using Vista’s VDraw tool [8].
The intention during the transition is to operate a hybrid User
Interface (UI), transferring some screens to Phoebus/EPICS
while others remain in VDraw/VSystem as control of hard-
ware is ported. If a user changes the value of the PV in

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV019

MOPV019C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

166 Control System Upgrades



Figure 2: Flowcharts demonstrating the logic behind vista-
toepics and epicstovista.

the ISIS MCR through a Phoebus screen where the hard-
ware is still controlled by Vsystem, the change needs to be
propagated from the EPICS Client to Vsystem to update the
hardware. The same is true in reverse; if hardware is read
via an EPICS IOC but the control screen is still operated by
a VDraw screen, the PV values will need to be propagated
to Vsystem. A pvapy Channel connection and callback is
used to do this. As the update comes through via the EPICS
callback, the values are converted to a JSON format that
the Vsystem code on OpenVMS is expecting. The message
is then published to the correct setter topic on the MQTT
broker, which activates a set command in Vsystem [11].
The main loop of the program follows a similar structure to
vistatoepics and can be seen in Fig. 2.

Alarmed channels are monitored in a similar way, but
changes to the channel metadata are also tracked to provide
updates if the alarm limits are changed through EPICS.

DEVELOPMENT ENVIRONMENT
Environment

The ISIS accelerator control system is also transition-
ing from OpenVMS to Linux as a base operating system.
Therefore, in order to future-proof the design of the bridging
software, PVEcho has been developed using Docker [17]

environments with a Linux operating system as the base of
the containers, to isolate and replicate PVEcho’s operating
environment. Two separate containers will be used to run
vistatoepics and epicstovista simultaneously, while isolating
the processes to give greater control over their execution.

Services
Alongside Linux and EPICS, PVEcho requires a connec-

tion to a number of other active services that ISIS utilises
to monitor and maintain its control system. These include
the ISIS MQTT broker [11] and the instance of CouchDB
where channel metadata is stored. The use of Docker while
developing PVEcho allowed connection to personally man-
aged containers to prevent premature interaction with the
live control system, minimising the risk of unintentional
changes to existing channels.

Testing
Throughout the development of the software, we have

tried to implement software good practice wherever possi-
ble. This includes the application of unit and integration
testing utilising GitLab’s CI/CD facility and the unittest [18]
framework in Python. Performance has also been monitored
using an in-house virtual logging system [19] to track the
CPU and memory use of each container while the software
is running.

FUTURE WORK
While functional, work on the current implementation of

PVEcho is still ongoing. The accelerators at ISIS will pri-
marily use the newer pvaccess protocol rather than channel
access [11]. The current version of PVEcho only imple-
ments PVs using the pvaccess protocol, as highlighted by
the use of a PVAServer to host the PVs. Future work on the
software will incorporate channel access, ensuring that any
changes to Vsystem channel values are broadcast to channel
access PVs as well as their pvaccess equivalents.

Future developments will also include the addition of
delayed alarms that are currently in use with VSystem. Ad-
ditionally, the PVMonitor class should be modified to allow
the bulk addition and removal of PVs from the monitor list
as devices containing groups of PVs are migrated, to reduce
the risk of user error in the transfer of channel names. Stress
testing of the live system should also be completed to ensure
that the software can cope with the day-to-day frequency of
messages and surges in demand.

CONCLUSION
A prototype of the bridge connecting Vsystem to EPICS

has been created to mimic more than 33,000 channels live
on the ISIS accelerator control system. PVEcho will allow
a hybrid system running both Vsystem and EPICS to be
utilised as control of hardware is progressively migrated to
EPICS, without incurring the risk of interrupting accelerator
operations. The prototype is due to be tested in deployment
before the end of the 2021 ISIS long shutdown [20].

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV019

Control System Upgrades

MOPV019

167

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



REFERENCES
[1] J.W.G. Thomason, “The ISIS Spallation Neutron and Muon

Source—The first thirty-three years”, Nuclear Instruments
and Methods in Physics Research Section A: Accelera-
tors, Spectrometers, Detectors and Associated Equipment,
vol. 91, pp. 61–67, Feb 2019. doi:10.1016/j.nima.2018.
11.129

[2] Vista Controls Systems Inc., https://www.vista-

control.com/.
[3] EPICS Control System, https://epics-controls.org/.
[4] I.D. Finch, “Evaluating VISTA and EPICS With Regard

to Future Control Systems Development at ISIS”, in Proc.
ICALEPCS’19, New York, NY, USA, Oct. 2019, pp. 291–292.
doi:10.18429/JACoW-ICALEPCS2019-MOPHA042

[5] K.V.L. Baker, F.A. Akeroyd, J.R. Holt, D.P. Keymer, T.
Löhnert, C. Moreton-Smith, et al., “IBEX: Beamline Con-
trol at ISIS Pulsed Neutron and Muon Source”, in Proc.
ICALEPCS’19, New York, NY, USA, Oct. 2019, pp. 59–64.
doi:10.18429/JACoW-ICALEPCS2019-MOCPL01

[6] Central Laser Facility, Rutherford Appleton Laboratory,
United Kingdom, https://www.clf.stfc.ac.uk

[7] Diamond Light Source, Rutherford Appleton Laboratory,
United Kingdom, https://www.diamond.ac.uk

[8] Vdraw, Vsystem User’s Guide v4.3, Vista Controls Systems
Inc., Jan 2014

[9] CS Studio Phoebus, https://controlssoftware.sns.
ornl.gov/css_phoebus/.

[10] MQTT standard: MQTT Version 3.1.1, OASIS, Octo-
ber 2014, http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/os/mqtt-v3.1.1-os.html

[11] I.D. Finch, A. Saoulis and G.D. Howells, “Controls Data
Archiving at the ISIS Neutron and Muon Source for in-
depth analysis and ML applications”, in Proc. ICALEPCS’21,
Shanghai, China, Oct. 2021, paper WEPV049, this confer-
ence.

[12] Eclipse Paho MQTT Python client library, https://pypi.
org/project/paho-mqtt/.

[13] pvapy, https://epics.anl.gov/extensions/pvapy/
production/index.html

[14] Apache CouchDB, http://couchdb.apache.org/.

[15] CouchDB’s python client, https://couchdb-python.
readthedocs.io/en/latest/.

[16] Vaccess Concepts, Vsystem User’s Guide v4.3, Vista Con-
trols Systems Inc., Jan 2014.

[17] Docker, https://www.docker.com/.

[18] python unittest framework, https://docs.python.org/
3/library/unittest.html

[19] G.D. Howells and I.D. Finch, “Containerised Control Systems
Development at Isis and Potential Use in an Epics System”,
in presented at ICALEPCS’21, Shanghai, China, Oct. 2021,
paper WEPV050, this conference.

[20] ISIS Long Shutdown 2021 Update, https://www.isis.
stfc.ac.uk/Pages/ShutdownUpdate.aspx.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV019

MOPV019C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

168 Control System Upgrades


