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Abstract
After 10 years of operation, the LOw Frequency ARray

(LOFAR) telescope is undergoing a significant hardware
upgrade towards LOFAR2.0. The hardware upgrade will
enable the phased array telescope to observe at 10-90 MHz
and at 120-240 MHz frequencies at the same time. With
the upgrade comes also the chance to review LOFAR’s Con-
trol System and to make it ready for the next 10 years of
operation at the forefront of low-frequency astronomy. In
this work we will give a brief overview over the LOFAR
telescope with its more than 50 geographically distributed
receiver locations (LOFAR Stations), and the software that
is necessary to monitor and control every single one of them.
We will then describe the Station Control architecture, with
its software design and how it is implemented in Python
3 with Tango Controls, OPC-UA clients and deployed as
Docker containers. Lastly we will report on the successful
use of open stack software like ELK and, Grafana.

LOFAR TELESCOPE OVERVIEW
LOFAR [1] is a geographically distributed radio telescope

array, consisting of around 60,000 dipole antennas. The an-
tennas are grouped into 56 stations, 38 of which are deployed
in the Netherlands, and the remaining 14 in other countries
across Europe. The scientific data from these stations are
streamed to our real-time GPU correlator [2] in Groningen,
the Netherlands. Thusly correlated (and beamformed) data
products are subsequently post processed. We send the end
result to our tape archives in the Netherlands, Germany,
and Poland. There the data products are made available for
download by the scientists.

LOFAR2.0 Station Upgrade
A LOFAR2.0 station will, like the current LOFAR sta-

tions, consist of up to 96 high-band dipole tiles (110–250
MHz), and 96 low-band dipole antennas (10–80 MHz). The
tiles and antennas are connected to 64 Receiver Control
Units (RCUs), which apply a configurable analog filter.

LOFAR2.0 will redesign these RCUs to have improved
filters. The new RCUs will also have the ability to process
data from all antennas simultaneously [3].

The RCU output is sent to station signal-processing
boards, to be beamformed and converted into UDP pack-
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ets. These packets are streamed over 10 GbE fibres to the
correlator.

Station Signal Processing
A station will contain up to 8 Uniboard2 processing

boards [4]. The boards use 32 FPGAs in total to sample
and digitise the signal at 200 MHz and calibrate, exchange,
beam form, and correlate their input. The end result is a
3–9 GBit/s data stream to the correlator per station, as well
as up to 300 Mbit/s of statistical information.

STATION MONITORING AND CONTROL
The hardware in each station exposes tens of thousands of

monitoring and control points through various interfaces and
protocols. Basically the Monitoring and Control of a LO-
FAR2.0 station can be condensed into two simple operations
at a station:

• Modify the behaviour of our hardware over time, e.g.
point at different sources in the sky.

• Verify that the dynamic behaviour has been success-
fully modified.

In addition to the basic concepts of station operation, the
nature of the distributed telescope requires that we also keep
track of the system health and let the station autonomously
act on extreme scenarios such as overheating of the equip-
ment.

Finally, we are interested in monitoring the quality of the
data recorded through our antennas and produced by our
processing boards. To this purpose, the signal-processing
boards continuously emit statistical information from several
points in the signal chain.

OPC UA as a Common Hardware Interface
The hardware that is to be monitored and controlled in

a LOFAR2.0 station comes in various shapes and forms.
This could imply that a station’s Monitor and Control sys-
tem would have to support a variety of different hardware
interfaces and protocols. We have, for example:

• Uniboard2 processing boards: I2C
• FPGAs on Uniboard2: UCP (Uniboard Control Proto-

col) over IP
• RCUs: I2C
• Power supplies: PLC interface
• Temperature sensors: PLC interface
• Network switch: SNMP
From prior experience in LOFAR1, as well as in other

telescope monitor and control systems (ALMA, WSRT), we
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learned that a common hardware communications protocol
minimises software complexity. Engineering and mainte-
nance personnel also benefits from a common hardware
interface on site as well as remote. The tooling can be uni-
fied and be kept simple to use, yet powerful enough to debug
hardware at an acceptable low enough level.

Thus we expect a common hardware protocol to have the
following properties:

• Open tooling available for remote hardware and inter-
face debugging

• No need for specialised equipment to communicate
with the hardware (JTAG dongles, I2C cards, etc.)

• Protocol client implementation available in Python 3 to
integrate seamlessly with the Station Control software

• Single server supports multiple clients
• Support for a direct mapping of Monitor and Control

points from hardware to software.
The widely adopted OPC UA protocol [5] supports all

of the properties above. In addition, OPC UA supports the
following aspects in a client-server system:

• OPC UA protocol is based on TCP/IP: Connection
reliability, simplicity of software integration

• Protocol insensitive to specific hardware timing: We
chose to implement timing sensitive behaviour server
side.

• Ability to browse self-describing attributes and meth-
ods: Enables introspection of the available Monitor and
Control points (name, type, dimensionality)

• Server implementations in C/C++ and Python 3: Al-
lows hardware engineers to implement the servers ob-
serving timing specific behaviour and other details of
the hardware.

OPC UA is a feature-rich protocol, but does not require the
user to make use of the full set of features. For LOFAR2.0
we chose to limit the use of OPC UA features to:

• Browsing of attributes and methods
• Reading and writing of attributes
• Calling of methods
• Use of OPC UA native data types only

OPC UA Hardware Translators
We run a dozen of OPC UA servers on Raspberry Pis in

the LOFAR2.0 station as interfaces to the station’s hardware.
These servers „translate“ the hardware-specific communica-
tions protocols1 into OPC UA attributes and methods. Thus
the name Hardware Translator, or Translator for short, for
the OPC UA server.

HIGHER-LEVEL MONITOR AND
CONTROL WITH TANGO CONTROLS
For the LOFAR2.0 Station Control software Tango Con-

trols [6], an open source and distributed object-oriented
Monitor and Control system, has been chosen as the core
software framework. It enables the software engineers to

1 See section "OPC UA as a common hardware interface".

focus on designing and implementing feature rich Moni-
tor and Control application hierarchies, that consist of an
arbitrary number of abstraction levels. The software engi-
neer does not have to implement low level functionality, like
for example automatic polling of an attribute’s value from
a source, attribute value on-change events, attribute value
alarm subscriptions or a system wide logging system. It
also provides a transparent and configuration-independent
component discovery through its underlying CORBA [7]
foundation. Tango Controls also provides a lot of tooling for
rapid prototyping and supports native Python 3 bindings.

Devices and Device Servers
A LOFAR2.0 station has no moving parts — the station

is controlled through Station Control, the software stack
hosted on a computer located in each station. It manages the
thousands of control and monitoring points exposed by the
Hardware Translators.

In order to map the Translators into the Tango Controls
realm, we represent each Translator in Tango Controls as
one or more Devices. These Devices are implemented in
Python 3 with PyTango [8], the high-level Python 3 API for
Tango Controls.

Devices are executed in Device Servers, which can run
one or more Devices using multithreading. In order to avoid
a shared process space and thus shared crashes and per-
formance bottlenecks, we chose to run each Device in a
dedicated Device Server.

The Station Control Devices
We designed a hierarchy of Devices that together form

the Station Control Devices landscape, as shown in Fig. 1.
The lowest layer Devices communicate with the Hardware
Translators, while the highest layer exposes business-logic
functionality to our central Telescope Manager.

Especially our signal-processing boards expose a lot of
functionality through numeric properties that can be set. In
order to keep the responsibilities of each Device manageable,
we divide the functionality exposed by some of the Hardware
Translators into multiple Devices. OPC UA makes this a
seamless experience because it does not enforce and one-to-
one mapping between clients and servers.

To further limit the number of attributes per Device, we
group most hardware Monitor points into arrays. For ex-
ample, in one Translator, an array of 16 booleans can flag
communication issues with the 16 FPGAs that the Transla-
tor monitors and controls. About a hundred arrays remain,
ranging from tens to tens of thousands of elements per array.

Tango Controls Attribute Wrapper
The multitude of Tango Controls attributes forced us to

look at representing them as efficiently as possible in our
source code. For that we developed a generic „attribute
wrapper“ framework. It allows us to map almost any source
of information to a set of Tango Controls attributes. The
Attribute Wrapper takes care of the interaction and manage-
ment of the data source, while the software engineer provides
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Figure 1: Station Control Devices landscape. The yellow boxes represent software components. Components belonging to
Tango Controls, as well as our Tango Devices, are annotated with the Tango logo. The green boxes represent collections of
Hardware Translators. Purple boxes represent LOFAR2.0 components external to the station.

just a minimum amount of information when constructing
an attribute. The example source code in Fig. 2 shows just
two lines of source code that fully constructs two complex
Tango Controls attributes. One attribute just reads its value
from an OPC UA server, the other one reads from and writes
to an OPC UA server.

The Attribute Wrapper requires a protocol or interface-
specific implementation. This is as simple as implementing
the following functions once per type of interface:

• Connect to the data source
• Disconnect from the data source

• Generic read function that reads a value from a location
of the data source

• Generic write function that writes a value to a location
of the data source

As seen, in the case of an OPC UA data source for at-
tributes, the attribute construction with the Attribute Wrap-
per requires just a simple string annotation that tells the
built-into the Attribute Wrapper OPC UA client where it can
find the respective OPC UA attribute in the server. Once
the OPC UA connection is established in the device’s ini-
tialisation phase, the attributes are automatically linked to

RCU_temperature_R = attribute_wrapper(
comms_annotation = ["RECV, "RCU_temperature_R"],
datatype = numpy.float64, dims = (32,))

HBA_element_beamformer_delays_RW = attribute_wrapper(
comms_annotation = ["RECV", "HBA_element_beamformer_delays_RW"],
datatype = numpy.int64, dims = (32, 96), access = AttrWriteType.READ_WRITE)

Figure 2: Example code showing the definition of two attributes in a Tango Controls Device. The comms_annotation
field encodes the OPC UA specific parameters the OPC UA connection class needs to access this attribute.
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the actual OPC UA connection and the relevant OPC UA
attribute (and unlinked on de-initialisation).

The result is a very efficient and simple to use framework
which we extended to cover the management of, among
others, SNMP devices, Docker containers and INI-format
files.

Statistical Data Streams
The FPGAs produce streams of statistical data about their

main 3–9 Gbps data streams flowing out of the station:
crosslet statistics (XSTs) revealing phase and amplitude dif-
ferences between the inputs, frequency & amplitude plots
of each individual antenna (SSTs), and power spectra of the
output data stream (BSTs). These statistical data are divided
over UDP packets, sent collectively by all FPGAs.

The FPGAs require to be configured with the MAC and
IP address of the receiver, of which there can be only one, as
UDP Multicast is tricky to set up, especially across switch
boundaries. Yet multiple users are interested in these statis-
tics: telescope operators and maintainers use them to verify
the data quality and expert users record the stream to produce
additional scientific data products.

In LOFAR1, we allow the UDP stream to be configured
by any interested user, but learned that such a solution gives
an awful user experience. Receiving and recording UDP
streams tends to require low-level programming, easily leads
to data loss and demands that the user does not forget to turn
off the stream explicitly.

The conclusion from past experiences is that we designed
a more elegant solution. Each type of statistical data is
configured to be sent to a dedicated Device Server. The
Statistics Device, that runs in that Device Server, collects
the UDP streams from all FPGAs. With the help of our
Attribute Wrapper framework, we easily expose the resulting
statistical data matrices, the metadata, such as timestamps
and other properties, and meta-statistics, such as packet and
error counters.

These statistical data matrices represent the most re-
cent statistical values as computed by the processing board.
The Statistics Devices expose the matrices as arrays of f.e.
192x512 floats, or 192x192x8 complex values, which typi-
cally get updated every second or faster.

Statistics Replicator Monitoring these matrices auto-
matically is rather computing expensive, so we added another
interface to record these statistics over time: We expose a
TCP port per type of statistic. Any connecting user receives
the raw UDP packet stream over this TCP connection until
the user disconnects or the Device is shut down. The Device
allows as many connections as the available bandwidth al-
lows. Monitoring points for this „Statistics Replicator“ are
exposed through our Attribute Wrapper as well.

Statistics Writer Furthermore, we provide the user with
a Statistics Writer. It reuses the same classes to convert the
Statistical Data Stream into matrices on the client side. Then
it just writes them as an HDF5-file to disk. The HDF5-file

contains proper data structures and attributes of the Statisti-
cal Data Stream.

Observation and Tracking Devices
A station’s main task is to partake in observations per-

formed by one to all stations in concert. Observations carry
many configuration settings and require parts of the hard-
ware to be reconfigured every second. The adjustments of
hardware parameters are necessary to track the observed
source across the sky as Earth rotates. We are in the process
of managing this behaviour by implementing a Tracking
Device to perform the necessary computations.

For each observation, dedicated Observation and Tracking
Devices are dynamically created and started. Both work
together to maintain the station in a state such that it fulfills
the observational requirements throughout an observation.
This is done without interfering with observations that are
executed in parallel on the same station. The Tango Controls
system seamlessly allows this dynamism.

DEPLOYMENT
The core of our Station Control software stack is based

on the Docker image framework for Tango Controls, origi-
nally provided by the Square Kilometre Array Observatory
(SKAO) [9]. A part of the SKAO framework provides a
basic setup of Docker containers that run the core Tango pro-
cesses and an example Device Server. We have significantly
extended this part of the framework, for example, by:

• Making the Device Servers that run inside Docker
externally reachable, by adjusting the underlying
CORBA [7] parameters

• Running each Device Server in a dedicated Docker
container

• Added a rich set of integrations with modern
tool chains, such as ELK [10], Prometheus [11],
Grafana [12], and Jupyter Notebooks [13] (see below)

• Added an integration and unit-test framework, run from
Gitlab CI/CD

Stacking Open Interfaces
Modern toolchains make it easier to attain high levels of

integration between complex software stacks. We added
a significant number of web interfaces by adding off-the-
shelf Docker images that needed only little configuration.
The separation of services into Docker containers and link-
ing them through open interfaces proved to be a powerful
combination.

Jupyter Notebooks A Jupyter Notebook server [13]
allows users to access all control and monitoring points in
a station. It comes with PyTango [8] pre-installed and pre-
configured for easy access to all Station Control Devices. We
provide example Notebooks (see Fig. 3) and the user can save
and load their own. Plotting libraries are pre-installed as well
which makes the Jupyter Notebooks a powerful engineering
interface.
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Figure 3: Example of using the station’s Jupyter Notebook to read the state of the Devices and one of the Device attributes.

ELK stack An ELK stack [10] collects logs from all
Devices, Device Servers and several of the other services
that we run. We added Python LogHandlers and Filters
to automatically route all Python log output to Tango’s log
system, our ELK stack and stdout. Each log line is annotated
with the name of the Tango Device that generated it. This
both leads to richer logs and alleviates the need of having to
forward the Tango log streams to our utility classes, as all
classes can now just use Python’s native logging interface
yet still log to Tango.

Grafana We added and adjusted the SKA’s experimen-
tal TANGO-Grafana exporter [14] to allow all but the biggest
arrays of monitoring points to be periodically scraped by a

Prometheus time-series server [11]. A Grafana [12] dash-
board system (see Fig. 4), also installed on the station, has
this Prometheus server configured as its data source, along
with the Tango Archiver database, Tango database, and our
station’s ELK stack. Pre-configured dashboards provide a
rich overview of the station’s state and state history, from
temperature sensors to current hardware settings and active
software and firmware versions and the state of all Docker
containers.

Sphinx & Read the Docs Finally, we generate user
documentation through a Sphinx [15] integration and a web
hook from our Gitlab server to Read the Docs [16]. Having
our source code publicly available made this trivial to setup.

Figure 4: An excerpt from one of our Grafana dashboards.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOAR03

Control System Upgrades

MOAR03

35

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Benefits of Simulating the Hardware Interfaces
The LOFAR2.0 station contains custom hardware that the

software engineers do not necessarily have access to. We
discovered early the benefits of simulation of the interfaces
that hardware exposes. Our Translator setup is such, that
it allows us to run them stand-alone in Docker containers
and simulate the hardware in a very basic and static fash-
ion. While these instances do not have access to backing
hardware, they do expose the OPC UA interface just like the
actual equipment would. This allows us to write integration
tests to verify the attribute names, types, dimensionalities,
and other basic properties.

CONCLUSION
Over the past 18 months we found Tango Controls [6] to be

a very powerful Monitor and Control framework that makes
the life of our software engineers much easier. Development
of software devices in Python 3 became a simple task. Rapid
prototyping with quick cycles of testing, debugging, bug
fixing showed to be extremely valuable not only for software-
only devices but also for devices that represented parts or
all of one of our Hardware Translators. Especially when
hardware was involved, our Attribute Wrapper has shown
its incredible power due to its built-in separation of Tango
Controls on one side and interfacing with hardware on the
other side.

Without Tango Controls, our Attribute Wrapper, OPC UA
and the SKAO Docker images for Tango Controls, we would
not have been able to deliver the wealth of functionality with
the little manpower that we had at our disposal.

The entire source code of the LOFAR2.0 Station Control
project [17] is made publicly available under the Apache,
Version 2.0, Open Source license [18]. The SKAO Docker
images that we use are publicly available at the SKAOś
artefact repository [19].
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