©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPVO13

A DYNAMIC BEAM SCHEDULING SYSTEM FOR THE
FAIR ACCELERATOR FACILITY

S. Krepp™, J. Fitzek, H. Hiither, R. Mueller, A. Schaller, A. Walter
GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany

Abstract

The new Accelerator Control System for GSI/FAIR is
now being used productively for the GSI accelerator facil-
ity. As the central component for online beam orchestration,
the Beam Scheduling System (BSS) is situated between the
FAIR Settings Management System and the FAIR Timing
System. Besides device settings, the Settings Management
System provides timing schedules for beam production. The
primary purpose of BSS is to define which of the beam sched-
ules are executed by the Timing System, how often and in
which order. To provide runtime decisions in pre-planned
execution options (e.g. skipping of a particular beam), it
processes external signals like user input, experiment re-
quests or beam prohibits provided by the interlock system.
More recently, advanced features have been added that al-
low for dynamic execution control required by Storage Ring
Mode features such as breakpoints, repetitions, skipping and
manipulations. This contribution gives an overview of the
Beam Scheduling System including its interfaces.

INTRODUCTION

One of the major building blocks of the new Accelera-
tor Control System for GSI/FAIR is the Beam Scheduling
System (BSS). Residing in the middle tier of the FAIR Con-
trol System, its core functionality is the orchestration of
beams based on user requests. Figure 1 shows how BSS is
embedded into the overall Control System architecture.

In the FAIR Settings Management System LSA, beams
are represented as Beam Production Chains and are put to-
gether to Patterns for defining an execution sequence. This
includes both, settings for hardware devices, as well as an
execution schedule defining which Timing Events are to be
sent to which parts of the facility. Additionally, by assign-
ing Patterns to Pattern Groups, LSA defines which Patterns
must be executed sequentially and which Patterns may run
in parallel. The schedule for each Pattern and the informa-
tion about Pattern Groups is provided to the BSS system,
which creates an overall schedule for the accelerator facility
and sends it to the Timing System’s Generator component.
The Generator then translates this schedule to the low-level
programming of the Data Master.

Operators and experimenters define, which beams they
would like to have produced using applications and services,
that in turn send these requests to BSS. At the same time, the
Master Accelerator Status Processor (MASP) determines
whether a certain Pattern can be executed, by collecting sta-
tus and interlocks of all required devices and services. BSS
then combines both of these inputs and sends commands to

5

s.krepp@gsi.de
MOPV013
138

Runtime &

Settings !
Management
Applications

Control
Applications

Presentation-
focused

Available
Patterns

Requested
Patterns

Changed
Settings

LSA gJ
(LHC Software Architecture)

Scheduled .
st Settings Management System

Patterns

BSS &I

1
() 8]
.E’_U (Beam Macl;lnle
= @ | Scheduling Pattern Timing Mode
5 3 System) Event Schedules
£ Required
e Devices
@
X MASP g]
perecution (Master Accelerator
Status Processor)
Global Timing Timing Schedule Hardware
Event Schedule Commands Interlocks Settings

g]
Eenerator

i

|
o
s ° Low-level Timing
% 2 Event Schedule
o .
S5 Timing
£ = Data g Events ‘

g]
Timing &l
Receiver

Front-End Computers

Master

Timing System

Figure 1: BSS in the FAIR Control System.

the Generator, that dynamically modifies the overall schedule
accordingly. At runtime, the Data Master sends out timing
events via the White Rabbit-based timing network. Those
events lead to synchronous execution of settings in devices
as calculated and provided by LSA.

As shown, BSS is the central instance that decides which
of the preconfigured schedules are executed. This contri-
bution presents technical details of the BSS system and its
interfaces to give an insight, of how beam orchestration is
realized within the GSI/FAIR Accelerator Control System.

SCHEDULE REPRESENTATION

Schedules within BSS are represented as schedule graphs
that can be executed by the Timing System [1]. The graph
itself is represented in the .dot format [2]. The vertices in this
directed graph can roughly be interpreted as executable units
linked together by a set of edges. Once started, a control
thread walks over those vertices one after another in order
to execute them. The actual sequence of vertices is defined
by a set of edges marked as default destinations. Alternative
routes through the schedule are defined by a set of alternative
destinations.

Control System Upgrades



18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

To allow for dynamic schedule changes, the Timing Sys-
tem supports switching of default destinations in the sched-
ule graph, thus allowing the beam schedule to be altered at
runtime by changing the default path through the schedule
graph. BSS is responsible for managing the configuration
of the Timing System by providing beam schedules and for
altering those schedules on the fly based on user requests.

SCHEDULE CONFIGURATION

As described, LSA supplies BSS with individual sched-
ules per Pattern and it is up to BSS to integrate them into
a global timing schedule. Doing so, the schedules are not
just merged, but extended to later gain flexibility at runtime.
Conceptionally, the resulting schedule is driven by three
major requirements. Firstly, Patterns specified in one Pat-
tern Group must be scheduled sequentially respecting their
specified execution order, while Patterns in different Pattern
Groups shall run in parallel. Secondly, BSS must be able
to permanently enable and disable each individual Pattern
schedule’s execution to allow for beam prohibits and user
requests. Thirdly, BSS must be able to schedule individual
Patterns for being executed exactly once.

The first requirement is met, as BSS manages Pattern
Schedules on a per Pattern Group basis. It combines the indi-
vidual Pattern schedules to a circular Pattern Group schedule
graph. Different Pattern Groups result in different Pattern
Group schedule graphs and can be executed in parallel.

An example Pattern Group schedule graph is shown in
Fig. 2. Each individual Pattern schedule has one explicit
entry and exit node, e.g. A_ENTRY and A_EXIT. The
Pattern schedule for Pattern A is shown here only as one
node A for the sake of simplicity. However, in the real
schedule graph, node A actually consists of many vertices
and edges that represent the actual behaviour of the machine,
e.g. the timing events for this Pattern. The currently active
loop through the graph is drawn with solid edges, alternative
paths trough the graph are drawn with dotted edges.

To meet the second requirement, and to be able to switch
the execution of one Pattern on and off, BSS adds an alter-
native path directly from ENTRY to EXIT, i.e. the edge
from A_ENTRY to A_EXIT. To prevent Patterns from being
executed right away, once they are provided to the Timing
System’s Generator and execution is started, the edge that
skips Pattern execution is in fact set as the default one. Con-
sequently, it is drawn as a solid edge in the figure. The edge
used for actually executing Pattern A is represented by a
dotted line, as it must be explicitly switched on later by BSS.

In addition to the Pattern schedules provided by LSA,
BSS adds a so-called Default Pattern schedule to the Pattern
Group schedule graph. It is used for idle operation, i.e. when
no beam is requested. Finally, each Pattern’s exit node is
extended with outgoing edges to each available Pattern’s
entry node which gives BSS the ability to build arbitrary
loops of Pattern schedules.

To meet the third requirement of being able to execute a
Pattern only once, it was necessary to keep the entry nodes

Control System Upgrades

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPVO13

DEFAULT

A_ENTRY
@ k.

A_EXIT

K
B_ENTRY
A

B_EXIT

Figure 2: Pattern Group schedule with only the Default
Pattern being active.

in the active loop for each Pattern also in the case, that this
Pattern is not being requested at the moment. This is why
in case no Pattern is requested, the Pattern Group schedule
graph’s active loop does not only consist of the Default
Pattern pointing to itself, but contains all the entry and exit
nodes as shown. The single shot request is described in more
detail in section NON-PERMANENT OR

SINGLE SHOT REQUESTS.

After the Pattern Group schedule has been prepared by
BSS, it is added to the Timing System’s global schedule.
The Timing System supports multithreading by assigning
parts of the global timing schedule to a certain thread. In
order to support parallel execution of independent Patterns,
each Pattern Group schedule is executed in its own thread.
With a start command sent to the Generator, the execution
begins right away. When the graph from Fig. 2 is executed,
the Timing System loops over the nodes that are coloured
green: a sequence containing the Default Pattern schedule
and the nodes A_ENTRY, A_EXIT, B_ENTRY, B_EXIT.
However, the Patterns A and B are not executed since their
internal schedule subgraphs A and B are skipped.

MOPV013
139

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI



©

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

Whenever the Pattern Group gets changed, e.g. a Pattern
is added or removed, BSS stops the corresponding thread
and replaces the old Pattern Group schedule with the new
one.

As shown, the overall timing schedule at FAIR includes
schedules for multiple Pattern Groups, which itself integrate
multiple Pattern schedules. The following sections describe
how BSS interacts with the Timing Schedule and how this
is triggered by external requests.

SIGNAL-BASED RUNTIME DECISIONS

The primary input for runtime decisions concerning which
parts of the global schedule should be executed are dedicated
binary signals, with valid values being either enabled or
disabled. Signal states are exclusively managed by BSS,
however it exposes a client API for reading and writing
signal states. BSS defines various signal types which can
be used for different use cases as well as for access control.
Signals of type DISABLED_BY_LSA for instance, can only
be set by the Settings Management System itself and not be
overridden by client applications.

Basically, BSS performs two categories of runtime deci-
sions. The first one are decisions on Pattern Group level, i.e.
which Pattern should be running, which will be described
in the next section. The second category are decisions on
Pattern level where decisions on alternative paths within a
Pattern schedule are made (see section STORAGE RING
CONTROL).

PATTERN SCHEDULE EXECUTION
CONDITIONS

In order to decide which Pattern schedules to execute,
each schedule is bound to an execution condition. Each
execution condition is expressed as a propositional formula
using signals as statements and logical operators (AND,
OR, NOT). Because of their binary nature, signals can be
directly mapped to boolean variables. This way, complex
execution conditions can be easily built as the following
example illustrates:

(SIGNAL_A vV SIGNAL_B) A=SIGNAL_C (1)
If a Pattern schedule is bound to the above condition, it

is scheduled for execution if at least one of SIGNAL_A or

SIGNAL_B is enabled and Signal_C is disabled.

Signals used in execution conditions are either predefined
signals that are independent from current scheduling-related
settings in the facility (static signals) or signals defined by
the Settings Management System (dynamic signals). Static
signals for instance, are typically used for requesting beam,
also from custom experiment control systems. It is up to the
Settings Management System to supply BSS with execution
conditions and dynamic signal definitions.

MOPV013
140

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPVO13

PERMANENT REQUESTS

With signals being used in execution conditions and BSS
providing a simple API for changing signal states, users can
enable and disable Pattern executions by simply sending
permanent signal change requests. Signal state changes are
persisted in a database. Afterwards BSS executes relevant
execution conditions and determines which Patterns to en-
able or disable in the global timing schedule. Finally, it
sends commands to the Timing System that switch schedule
edges accordingly.

In order to permanently enable an actual Pattern for exe-
cution, the default destination from the Pattern’s entry node
is simply switched from the exit note to its actual timing
schedule content (as represented by A in Fig. 3).

A_ENTRY
A
v
A_EXIT

Figure 3: Part of a Pattern Group schedule with Pattern A
being enabled.

NON-PERMANENT OR
SINGLE SHOT REQUESTS

As described above, permanent signal requests lead to
schedules being executed periodically since the resulting de-
fault execution path is always a circular subgraph. Therefore,
those requests are not adequate for experiments requiring
precisely a single shot or any other fixed number of Pattern
executions. This is especially true for schedules of short
duration, as reaction times of operators (and even automated
systems) are threshold-bound and not arbitrarily short. It
cannot be expected that an operator waits for a single execu-
tion of a Pattern and is able then to disable it before the next
execution starts.

To allow for single shots, BSS provides so called non-
permanent requests. Whenever a non-permanent request
arrives, BSS does not apply the requested signal changes
permanently, but builds a signal state snapshot from all ex-
isting signal states and applies the non-permanent changes
to it. Afterwards, execution conditions of all schedules are
evaluated against these snapshots. Schedules being enabled

Control System Upgrades



18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

by this evaluation are scheduled to be executed exactly once
(Fig. 4).

Figure 4: Queued Flow command in A_ENTRY leading to
an exactly once execution of A when consumed.

To make this work, the BSS utilizes the ability of the Tim-
ing System to define command queues for schedule nodes.
To prepare the schedule for non-permanent requests, a com-
mand queue is defined for each Pattern’s entry node. When-
ever a Pattern schedule should be executed exactly once, BSS
writes a non-permanent flow command to the corresponding
command queue specifying a temporary successor. When
the Timing System executes this node, it will consume the
command and will not go down the default execution path,
but instead to the one specified in the command. Since the
queued command is consumed, the prior default path is used
again for the next execution.

STORAGE RING CONTROL

In addition to enabling and disabling whole Patterns, BSS
also allows for a more fine-grained schedule control, that is
extensively used for the Storage Ring Mode features break-
points, skipping, repetition and manipulation for ESR and
CRYRING [3]. To support these features, beam schedules
for FAIR can contain sub-schedules with elements/edges that
can be directly controlled by users utilizing BSS’s signals.
The mechanism is simple and is again based on switchable
schedule edges which are based on the state of certain dy-
namic signals. A set of signal types has been added, that
allows the definition of signals, from which BSS can directly
infer which edges to switch.

To allow for breakpoints, where Pattern execution stops at
defined points, the signal type BREAK_ENABLED is con-
nected with a pre-defined break loop in the schedule graph.
Setting the corresponding signal allows BSS to enable or
disable the breakpoint. The name of the specific breakpoint
is encoded in the signal’s name, thus allowing for several
breakpoints in the same schedule. Knowing the structure of

Control System Upgrades

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPVO13

BREAK_ENABLED “ NOT BREAK_ENABLED

Figure 5: Part of Pattern schedule with an enabled break-
point.

a breakpoint sub-graph, BSS can switch the edges accord-
ingly. This is demonstrated in Fig. 5. If BSS receives a sig-
nal with type BREAK_ENABLED and value==ENABLED,
BSS firstly decodes the breakpoint Subchain from the sig-
nal’s name. Afterwards it sets the default execution path
from BREAK_ENTRY to BREAK_BLOCK_ENTRY. If
the same signal is received with value==DISABLED, it sets
BREAK_EXIT as the successor of BREAK_ENTRY, which
means that the break loop is no longer executed.

Skipping of Subchains has been realized using the signal
type SKIP_SUBCHAIN. Similarly to skipping whole Pat-
terns as described above, signals of this type are associated
with edges that allow circumventing optional Subchains. As
all of these features make use of dynamic signals whose ini-
tial value is set to be FALSE, the Subchain will be executed
and not skipped by default.

Another basic feature of Storage Ring Mode is supporting
Subchain repetitions, e.g. for performing a measurement
for a defined number of times. With the beginning of Sub-
chain execution in the Timing System, a command queue at
an dedicated repetition node is filled with a command that
defines the number of repetitions for this Subchain. BSS
is responsible for cancelling these repetitions upon user re-
quest. This is done by flushing the corresponding queue
using the Generator’s command interface.

The most distinguished Storage Ring Mode feature is
trimming (i.e. manipulation of settings) while a Pattern is
running. This manipulation is realized as a loop in the graph
that is connected with an exit signal that can be triggered by
the user through BSS. While executing the same Subchain
over and over again, the user can apply small setting changes
to the devices.

For more information about these Storage Ring Mode
features, please refer to [3].

MOPV013
141

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI



Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

[0)

©

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

BEAM SCHEDULING VS. MACHINE
PROTECTION

The Beam Scheduling System is not part of the Machine
Protection System of the FAIR facility as it operates on a
different time scale than fast hardware protection systems.
However, if something goes wrong in the machine, BSS
is responsible for preventing Pattern schedules from being
executed on a software level. To do so, it continuously pro-
cesses status messages from the Master Accelerator Status
Processor (MASP), which in turn monitors relevant devices
and services. Whenever BSS detects, that a Pattern must no
longer be executed, BSS disables the associated schedule in
the global timing graph. In contrast to Patterns that are just
disabled by user requests, for prohibited Patterns, even their
entry and exit nodes are excluded from the schedule loop
(see Fig. 6). This ensures, that parts of the global schedule
which have been prohibited by interlocks, can no longer be
enabled by user requests, as long as the causing interlocks
remain active. In this regard, interlocks act as an overruling
of the signal based execution conditions.

DEFAULT

B_ENTRY
L

B_EXIT

Figure 6: A Pattern Group schedule with Pattern A disabled
by the Machine Protection System.

MOPV013
142

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-MOPVO13

SUMMARY AND OUTLOOK

The Beam Scheduling System, as described in this con-
tribution, has been used productively in several beamtimes.
Newer features, like those for Storage Ring Mode opera-
tion have been added and it has proven to be a reliable and
important building block of the FAIR Control System. Com-
plete integration into the settings management system’s data
supply process, has allowed for an integrated solution, that
makes LSA not only the place for calculating settings for
devices, but also the place for schedule planning. BSS on
the other hand, creates the global execution schedule and
brings it together with runtime information, like user and
experiment requests and beam prohibits, which makes it
the central instance to decide, which of the preconfigured
schedules are to be executed by the Timing System.

Next BSS developments will target requirements com-
ing from the Injector Controls Upgrade project, which will
bring the existing UNILAC into the new Accelerator Con-
trol System. Challenges are expected to arise from its S0Hz
operation and a large number of pre-planned schedules.

REFERENCES

[1] DataMaster Manual, https://www-acc.gsi.de/wiki/
pub/Timing/TimingSystemDataMaster/FTN_dm_
schedules.pdf

DOT Language,
lang.html

R. Mueller, J. Fitzek, H. C. Hiither, H. Liebermann, D. On-
dreka, A. Schaller, and A. Walter, “Supporting Flexible Run-
time Control and Storage Ring Operation with the FAIR Set-
tings Management System”, presented at 21th Int. Conf. on
Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’21), Shanghai, China, Oct. 2021, paper
WEPV047, this conference.

[2] https://graphviz.org/doc/info/

(3]

Control System Upgrades



