A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

collider

Paper Title Other Keywords Page
MOAA01 Accelerators: The Final Frontier? factory, electron, linac, proton 1
 
  • K. J. Peach
    JAI, Oxford
  Particle accelerators at the high-energy frontier are essential to the exploration of the deep structure of the material universe around us. The new technologies required to achieve the highest energies also find application in other fields of science. The lecture will discuss the scientic motivation for the development of these new accelerator technologies and the applications that might result.  
slides icon Slides  
 
TOAB03 ALICE Control System – Ready for LHC Operation controls, monitoring, site, heavy-ion 65
 
  • A. Augustinus, M. Boccioli, P. Ch. Chochula, S. Kapusta, P. Rosinsky, C. Torcato de Matos, L. W. Wallet, L. S. Jirden
    CERN, Geneva
  • G. De Cataldo, M. Nitti
    INFN-Bari, Bari
  ALICE is one of the four LHC experiments presently being built at CERN and due to start operations by the end of 2007. The experiment is being built by a very large worldwide collaboration; about 1000 collaborators and 85 institutes are participating. The construction and operation of the experiment pose many technical and managerial problems, and this also applies to the design, implementation, and operation of the control system. The control system is technically challenging, representing a major increase in terms of size and complexity with respect to previous-generation systems, and the managerial issues are of prime importance due to the widely scattered contributions. This paper is intended to give an overview of the status of the control system. It will describe the overall structure and give some examples of chosen controls solutions, and it will highlight how technical and managerial challenges have been met. The paper will also describe how the various subsystems are integrated to form a coherent control system, and it will finally give some hints on the first experiences and an outlook of the forthcoming operation.  
 
TOPA02 SDA Time Intervals controls, injection, emittance, proton 79
 
  • J. Cai, E. S. McCrory, D. J. Nicklaus, T. B. Bolshakov
    Fermilab, Batavia, Illinois
  SDA (Sequenced Data Acquisition) Time Intervals is a hierarchical logging system for describing complex large-scale repeated processes. SDA has been used extensively at Fermilab* for fine tuning during the Tevatron Collider Run II. SDA Time Intervals is a new system born during discussions between CERN and FNAL about routinely recording relevant data for the LHC. Its main advantages are extremly low maintenance and good integration with traditional "flat" dataloggers. The Time Intervals (TI) system records the time of key events during a process and relates these events to the data that the traditional datalogger archives. From the point of view of the application program, any number of datalogging systems can be refactored into human-understandable time intervals.

* SDA-based diagnostic and analysis tools for Collider Run II. T.B. Bolshakov, P. Lebrun, S. Panacek, V. Papadimitriou, J. Slaughter, A. Xiao. Proceedings of PAC 05, Knoxville, Tennessee, May 2005.

 
slides icon Slides  
 
TPPA03 Software Factory Techniques Applied to Process Control at CERN controls, factory, target, monitoring 87
 
  • M. D. Dutour
    CERN, Geneva
  The LHC requires constant monitoring and control of large quantities of parameters to guarantee operational conditions. For this purpose a methodology called UNICOS was implemented to standardize the design of process control applications. To further accelerate the development of these applications, we migrated our existing UNICOS tooling suite toward a software factory in charge of assembling project, domain, and technical information seamlessly into deployable PLC–SCADA systems. This software factory delivers consistently high quality by reducing human error and repetitive tasks and adapts to user specifications in a cost-efficient way. Hence, this production tool is designed to hide the PLC and SCADA platforms, enabling the experts to focus on the business model rather than specific syntax. Based on industry standards, this production tool along with the UNICOS methodology provides a modular environment meant to support process control experts to develop their solutions quickly. This article presents the user requirements and chosen approach. Then the focus moves to the benefits of the selected architecture and finishes with the results and a vision for the future.

LHC:Large Hadron ColliderUNICOS:UNified Industrial COntrol SystemsPLC:Programmable Logic ControllerSCADA:Supervisory Control And Data AcquisitionTerms:Process control, software engineering

 
 
TPPA16 Development of the Software Tools Using Python for EPICS-Based Control System controls, background, accumulation 120
 
  • K. Furukawa, J.-I. Odagiri, N. Yamamoto, T. T. Nakamura
    KEK, Ibaraki
  In the commissioning phase of accelerators, many application programs are built and modified frequently by nonexpert programmers. Scripting language such as Python is suitable for such quick development. Since EPICS Channel Access interface library in Python was developed in KEKB accelerator control system, many programs has been written in Python. We have been developing, providing some tools and libraries for Python programming. Some of the recent developments in KEK are reported, and possible applications are also discussed.  
 
TPPB04 Applications of OPC at BEPCII controls, luminosity, positron, electron 166
 
  • J. Zhao, H. J. Xu
    IHEP Beijing, Beijing
  The run-time data and machine parameters of the BEPCII is distributed over different platforms and stored with different softwares. Some is stored in various SCADA logging files, and some is stored in the EPICS archiver files. Now the EPICS data are stored in Oracle. No general method was provided to access these data. The OPC technology can solve this problem. Originally based on Microsoft's OLE COM (component object model) and DCOM (distributed component object model) technologies, the specification defined a standard set of objects, interfaces, and methods for use in process control and manufacturing automation applications to facilitate interoperability. We have developed EPICS/OPC Server and Oracle/OPC Server. With the help of these two servers and SCADA OPC Servers, it’s easy to get the data mentioned above on a Windows system. This paper describes the development of the two OPC servers and OPC applications at BEPCII.  
 
TPPB09 The ALICE Transition Radiation Detector Control System controls, radiation, power-supply, monitoring 181
 
  • J. M. Mercado
    Heidelberg University, Physics Institute, Heidelberg
  The ALICE experiment at the LHC incorporates a transition radiation detector (TRD) designed to provide electron identification in the central barrel at momenta in excess of 2 GeV/c as well as fast (6 us) triggering capability for high transverse momentum (pt > 3 GeV/c) processes. It consists of 540 gas detectors and about 1.2 million electronics readout channels that are digitized during the 2 us drift time by the front-end electronics (FEEs) designed in full custom for on-detector operation. The TRD detector control system (DCS) back end is fully implemented as a detector-oriented hierarchy of objects behaving as finite state machines (FSMs). PVSS II is used as the SCADA system. The front-end part is composed of a 3-layer software architecture with a distributed information management (DIM) server running on an embedded Linux on-detector system pool (about 550 servers) and the so-called InterComLayer interfacing the DIM client in PVSS as well as the configuration database. The DCS also monitors and controls several hundreds of low- and high-voltage channels, among many other parameters. The layout of the system and status on installation and commissioning are presented.  
 
WOAA01 The ILC Control System controls, feedback, monitoring, linear-collider 271
 
  • R. S. Larsen
    SLAC, Menlo Park, California
  • F. Lenkszus, C. W. Saunders, J. Carwardine
    ANL, Argonne, Illinois
  • P. M. McBride, M. Votava
    Fermilab, Batavia, Illinois
  • S. Michizono
    KEK, Ibaraki
  • S. Simrock
    DESY, Hamburg
  Since the last ICALEPCS, a small multi-region team has developed a reference design model for the ILC Control System as part of the ILC Global Design Effort. The scale and performance parameters of the ILC accelerator require new thinking in regards to control system design. Technical challenges include the large number of accelerator systems to be controlled, the large scale of the accelerator facility, the high degree of automation needed during accelerator operations, and control system equipment requiring “Five Nines” availability. The R&D path for high availability touches the control system hardware, software, and overall architecture, and extends beyond traditional interfaces into the accelerator technical systems. Software considerations for HA include fault detection through exhaustive out-of-band monitoring and automatic state migration to redundant systems, while the telecom industry’s emerging ATCA standard–conceived, specified, and designed for High Availability–is being evaluated for suitability for ILC front-end electronics. Parallels will be drawn with control system challenges facing the ITER CODAC team.  
slides icon Slides  
 
WOPA03 LHC Software Architecture [LSA] – Evolution Toward LHC Beam Commissioning controls, injection, optics, beam-losses 307
 
  • S. Deghaye, M. Lamont, L. Mestre, M. Misiowiec, W. Sliwinski, G. Kruk
    CERN, Geneva
  The LHC Software Architecture (LSA) project will provide homogenous application software to operate the Super Proton Synchrotron accelerator (SPS), its transfer lines, and the LHC (Large Hadron Collider). It has been already successfully used in 2005 and 2006 to operate the Low Energy Ion Ring accelerator (LEIR), SPS and LHC transfer lines, replacing the existing old software. This paper presents an overview of the architecture, the status of current development and future plans. The system is entirely written in Java and it is using the Spring Framework, an open-source lightweight container for Java platform, taking advantage of dependency injection (DI), aspect oriented programming (AOP) and provided services like transactions or remote access. Additionally, all LSA applications can run in 2-tier mode as well as in 3-tier mode; thus the system joins benefits of 3-tier architecture with ease of development and testability of 2-tier applications. Today, the architecture of the system is very stable. Nevertheless, there are still several areas where the current domain model needs to be extended in order to satisfy requirements of LHC operation.  
slides icon Slides  
 
WPPB10 Virtually There: The Control Room of the Future controls, linear-collider, positron, laser 418
 
  • F. Bonaccorso, A. Busato, A. Curri, D. Favretto, M. Prica, M. Pugliese
    ELETTRA, Basovizza, Trieste
  Imagine the ILC is up and running. Electrons and positrons collide happily, and scientists are taking data. Suddenly there's a problem with one of the laser wires. All experts are at a meeting on a different continent, but the problem needs to be fixed immediately. Difficult? Not when there's a Global Accelerator Network Multipurpose Virtual Lab (GANMVL) in place. High-speed, high-resolution cameras would allow the faraway experts to look at the fault, a web-based portal would let them access the controls and tools of the system with a simple "single-sign-on" procedure. However, the virtual lab is not just about remote operation. In principle it is already possible to run a control room remotely. This system is radically different in that it takes into account the human aspect of teamwork around the world. The implications of a working virtual control room are enormous. It might revolutionise virtual collaboration in completely different areas. The paper presents the GANMVL tool and the results of the evaluation of the Virtual Lab in production environment and real operations.

* http://www.eurotev.org/, “European Design Study Towards a Global TeV Linear Collider.” ** http://www.linearcollider.org/cms/, “International linear collider.”

 
 
WPPB25 Realization of a Custom Designed FPGA Based Embedded Controller controls, feedback, heavy-ion, diagnostics 451
 
  • M. Harvey, T. Hayes, L. T. Hoff, R. C. Lee, P. Oddo, K. Smith, F. Severino
    BNL, Upton, Long Island, New York
  As part of the low-level RF (LLRF) upgrade project at Brookhaven National Laboratory’s Collider-Accelerator Department (BNL C-AD), we have recently developed and tested a prototype high-performance embedded controller. This controller is a custom-designed PMC module employing a Xilinx V4FX60 FPGA with a PowerPC405 embedded processor and a wide variety of onboard peripherals (DDR2 SDRAM, FLASH, Ethernet, PCI, multi-gigabit serial transceivers, etc.). The controller is capable of running either an embedded version of LINUX or VxWorks, the standard operating system for RHIC front-end computers (FECs). We have successfully demonstrated functionality of this controller as a standard RHIC FEC and tested all onboard peripherals. We now have the ability to develop complex, custom digital controllers within the framework of the standard RHIC control system infrastructure. This paper will describe various aspects of this development effort, including the basic hardware, functional capabilities, development environment, kernel and system integration, and plans for further development.  
 
WPPB38 Update on the CERN Computing and Network Infrastructure for Controls (CNIC) controls, factory, hadron 472
 
  • S. Lueders
    CERN, Geneva
  Over the last few years modern accelerator and experiment control systems have increasingly been based on commercial-off-the-shelf products (VME crates, PLCs, SCADA, etc.), on Windows or Linux PCs, and on communication infrastructures using Ethernet and TCP/IP. Despite the benefits coming with this (r)evolution, new vulnerabilities are inherited too: Worms and viruses spread within seconds via the Ethernet cable, and attackers are becoming interested in control systems. Unfortunately, control PCs cannot be patched as fast as office PCs. Even worse, vulnerability scans at CERN using standard IT tools have shown that commercial automation systems lack fundamental security precautions: Some systems crashed during the scan, others could easily be stopped or their process data be altered. During the two years following the presentation of the CNIC Security Policy at ICALEPCS2005, a “Defense-in-Depth” approach has been applied to protect CERN's control systems. This presentation will give a review of its thorough implementation and its deployment. Particularly, measures to secure the controls network and tools for user-driven management of Windows and Linux control PCs will be discussed.  
 
ROPA02 The High Performance Database Archiver for the LHC Experiments insertion, controls, simulation, background 517
 
  • M. Gonzalez-Berges
    CERN, Geneva
  Each of the Large Hadron Collider (LHC) experiments will be controlled by a large distributed system built with the SCADA tool PVSS. There will be about 150 computers and millions of input/output channels per experiment. The values read from the hardware, alarms generated, and user actions will be archived for the physics analysis and for the debugging of the control system itself. Although the original PVSS implementation of a database archiver was appropriate for standard industrial use, the performance was not enough. A collaboration was set up between CERN and ETM, the company that develops PVSS. Changes in the architecture and several optimizations were made and tested in a system of a comparable size to the final ones. As a result we have been able to improve the performance by more than one order of magnitude, and what is more important, we now have a scalable architecture based on the Oracle clustering technology (Real Application Cluster or RAC). This architecture can deal with the requirements for insertion rate, data querying, and manageability of the high volume of data (e.g., an insertion rate of > 150,000 changes/s was achieved with a 6-node RAC cluster).  
slides icon Slides  
 
RPPA04 Automating the Configuration of the Control Systems of the LHC Experiments controls, hadron 529
 
  • P. Golonka, F. Varela, F. Calheiros
    CERN, Geneva
  The supervisory layer of the Large Hadron Collider (LHC) experiments is based on the PVSS SCADA tool and the Joint Control Project (JCOP) framework. This controls framework includes a Finite State Machine (FSM) toolkit, which allows operation of the control systems according to a well-defined set of states and commands. During the FSM transitions of the detectors, it will be required to reconfigure parts of the control systems. All configuration parameters of the devices integrated into the control system are stored in the so-called configuration database. In this paper the JCOP FSM-Configuration database tool is presented. This tool represents a common solution for the four LHC experiments to ensure the availability of all configuration data required for a given type of run of the experiment, in the PVSS sub-detector control applications. The implementation strategy chosen is discussed in the paper. This approach enables the standalone operation of different partitions of the detectors simultaneously while ensuring independent data handling. Preliminary performance results of the tool are also presented in this paper.  
 
RPPA05 Software Management of the LHC Detector Control Systems controls, target, background, hadron 532
 
  • F. Varela
    CERN, Geneva
  The control systems of each of the LHC experiments contain on the order of 150 computers running the back-end applications that are based on the PVSS SCADA package and the Joint Controls Project (JCOP) Framework. These inter-cooperating controls applications are being developed by different groups all around the world and have to be integrated by the experiments’ central controls teams. These applications will have to be maintained and eventually upgraded during the lifetime of the LHC experiments, ~20 years. This paper presents the centralized software management strategy based on the JCOP framework installation tool, a central repository shared by the different controls applications and an external database that holds the overall system configuration. The framework installation tool allows installation of software components in the sub-detector PVSS applications and eases integration of different parts of a control system. The information stored in the system configuration database can also be used by the installation tool to restore a computer in the event of failure. The central repository provides versioning of the various software components integrating the control system.  
 
RPPA33 Search for a Reliable Storage Architecture for RHIC controls, background, heavy-ion, diagnostics 585
 
  • R. A. Katz, J. Morris, S. Binello
    BNL, Upton, Long Island, New York
  Software used to operate the Relativistic Heavy Ion Collider (RHIC) resides on one operational RAID storage system. This storage system is also used to store data that reflects the status and recent history of accelerator operations. Failure of this system interrupts the operation of the accelerator as backup systems are brought online. In order to increase the reliability of this critical control system component, the storage system architecture has been upgraded to use Storage Area Network (SAN) technology and to introduce redundant components and redundant storage paths. This paper describes the evolution of the storage system, the contributions to reliability that each additional feature has provided, further improvements that are being considered, and real-life experience with the current system.  
 
RPPB08 The Development of Detector Alignment Monitoring System for the ALICE ITS laser, alignment, monitoring, controls 621
 
  • M. G. Cherney, Y. N. Gorbunov, R. P. Thomen, J. Fujita
    Creighton University, Omaha, NE
  • T. J. Humanic, B. S. Nilsen, J. Schley, D. Trusdale
    Ohio State University
  A real-time detector alignment monitoring system has been developed by using commodity USB cameras, spherical mirrors, and laser beams introduced via a single mode fiber. An innovative control and online analysis software has been developed by using the OpenCV (Open Computer Vision) library & PVSS (Prozessvisualisierungs- und Steuerungssystem). This system is being installed in the ALICE detector to monitor the position of ALICE's Inner Tracking System subdetector. The operational principle and software implementation will be described.  
 
ROPB01 Using Sequencing to Improve Operational Efficiency and Reliability controls, background, heavy-ion, power-supply 689
 
  • J. Niedziela, T. D'Ottavio
    BNL, Upton, Long Island, New York
  Operation of an accelerator requires the efficient and reproducible execution of many different types of procedures. Some procedures, like beam acceleration, magnet quench recovery, and species switching can be quite complex. To improve accelerator reliability and efficiency, automated execution of procedures is required. Creation of a single robust sequencing application permits the streamlining of this process and offers many benefits in sequence creation, editing, and control. In this paper, we present key features of a sequencer application commissioned at the Collider-Accelerator Department of Brookhaven National Laboratory during the 2007 run. Included is a categorization of the different types of sequences in use, a discussion of the features considered desirable in a good sequencer, and a description of the tools created to aid in sequence construction and diagnosis. Finally, highlights from our operational experience are presented, with emphasis on Operations control of the sequencer, and the alignment of sequence construction with existing operational paradigms.  
slides icon Slides