
DEVELOPMENT OF THE SOFTWARE TOOLS USING PYTHON FOR
EPICS-BASED CONTROL SYSTEM

T. T. Nakamura, K. Furukawa, J-I. Odagiri, N. Yamamoto, KEK, Tsukuba, Ibaraki, Japan

Abstract
In the commissioning phase of accelerators, many

application programs are built and modified frequently by
nonexpert programmers. Scripting language such as
Python is suitable for such quick development. Since
EPICS Channel Access interface library in Python was
developed in KEKB accelerator control system, many
programs has been written in Python. We have been
developing, providing some tools and libraries for Python
programming. Some of the recent developments in KEK
are reported, and possible applications are also discussed.

INTRODUCTION
KEKB is an asymmetric electron-positron collider at 8

× 3.5 GeV/c, which is dedicated to B-meson physics. Its
operation was started in December 1998. The KEKB
accelerators control system has been constructed based on
EPICS (Experimental Physics and Industrial Control
System) tool kit [1]. EPICS provides core mechanism for
the distributed control system. EPICS runtime database is
running on a local control computer called IOC
(Input/Output Controller). More than 100 VME/VxWorks
computers are installed as IOC in the KEKB accelerators
control system. Several workstations of 4 kinds of
platform (PA-RISC/HP-UX, Alpha/OSF1, PC-AT/Linux
and Macintosh/OSX) are also installed. Most of the
higher level application programs run in these
workstations. EPICS provides a network protocol called
CA (Channel Access) to exchange data between
computers. The atomic component of the data access is
called “channel”.

In KEKB accelerators control system, we have been
using SAD and Python extensively as a programming
language to build application program on the workstations
[2]. Python is an easy to learn, interpretive programming
language. It is not only simple but also has powerful
features: efficient high level data structures, object-
oriented programming and rich libraries, which cover
wide range of areas. With these feature Python is a good
tool for rapid application development.

We have developed various kinds of tools and libraries
in Python for these years. Among them CA interface
libraries, CA-Widgets and casave library are reported in
following sections. Further applications of Python are
also discussed.

CA INTERFACE LIBRARIES
In KEKB accelerators control system, we have

developed Python-CA module, which is a Python
interface module to EPICS CA. Python-CA provides
basic functions of CA. All of Python programs which
perform CA are built based on this module.

Basic functions of CA are get, put, and monitor
operations. List 1 shows an example of get operation of
Python-CA. Module name of Python-CA is “ca”, which
appears in import statement.

List 1: Example of Python-CA (get operation)

import ca
chan = ca.channel("channel_name")
chan.wait_conn()
chan.get()
ca.pend_event(1.0)
value = chan.val

Simple-CA library
While Python-CA provides powerful functions of CA

client library, most people still feels complexity for CA
programming. List 1 show that even for single get
operation it needs 4 function (or method) calls.

We have also developed Simple-CA library, which is a
kind of wrapper library of Python-CA. Simple-CA
provides simple way, which perform single get or put
operation in single function call. List 3 shows an example.
Module name of Simple-CA is “cas”. Programmer does
not need to call pend_event function explicitly. caget
function performs a get operation synchronously. It
implicitly waits until the request is completed. Python-CA
module itself also has similar functions. List 2 shows an
example.

List 2: Example of synchronous get by Python-CA

import ca
value = ca.Get("channel_name")

List 3: Example of synchronous get by Simple-CA

import cas
value = cas.caget("channel_name")

While synchronous get function is easy to use, its
efficiency is not good. Especially it is not suitable to
handle a large number of channels. For example, loop
over large number of channels takes much time to
perform, because every single get operation need to wait
completion of the request.

To overcome this problem, Simple-CA is designed to
have ability to handle multiple channels at single function
call. The caget function accepts list of channel names. It
returns list of values. List 4 shows the example.

List 4: Example of multiple gets by Simple-CA

import cas
v1,v2,v3 = cas.caget(["name1","name2","name3"])

List is the powerful data structure in Python. Using list
is simple but efficient solution.

TPPA16 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

120

CA-WIDGWTS
Most application programs for KEKB accelerator

operation have GUI (Graphical User Interface). Python
has some GUI extension modules. Among them “Tkinter”
is most popular. Tkinter is an interface module to Tcl/Tk,
with which Python gains ability to build GUI using Tk
widgets.

Although the combination of Tkinter and Python-CA
modules has powerful capability to build any kind of
control application programs, most people still feel
complexity about GUI programming. Thus we have
developed a ready-made widget library “CA-Widgets”
which is convenient parts set to build GUI of control
application programs.

CA-Widgets are easily extensible using object-oriented
feature of Python/Tkinter. See reference [3] for more
details.

CASAVE LIBRARY
In KEKB control system we have developed “casave”,

which is a library module to save channel values to files.
casave can save files with several formats. Table 1 shows
currently available formats. IOC can read “db” format file
using dbLoadRecord function at start up time. “dbpf” is
also IOC-readable format. “simple” and “valstat” formats
are general purpose.

Table 1: Save file formats available in casave

Format Description

db Compatible to EPICS database file

dbpf List of dbpf commands

simple Each line contains channel name and value.

valstat Each line contains channel name, value, severity,
status, and timestamp.

List 5: Example of configuration file of casave

from casave import defSaveFile
defSaveFile(
 iocname = "ioc_name",
 filename = "save_file_name.db",
 filedir = "dir_path/",
 backup = "flat",
 format = "db",
 chanlist = [("channel_name1","rec_name1","INP","ai"),
 ("channel_name2","rec_name2","DOL","ao"),
 ("cahnnel_name3","rec_name3","DOL","bo")]
)
Example of configuration file is shown in List 5. Some

parameters can be omitted under some conditions. The
configuration file itself is written in python. The
configuration is defined by calling defSaveFile function.
Each channel entry is defined by 4 parameters (4-tuple).
They are a channel name to be read, a record name to be
written to the save file, a field name to be written, and a
record type to be written. In most case, except “db”

format, the latter 3 parameters can be omitted. User can
call multiple defSaveFile in a configuration file.

When defSaveFile function is called, the definition of
the configuration is recorded internally in casave module.
All of the configuration can be accessed through global
variable SaveFileDict. To perform save operation, user
needs a few lines of coding. List 6 shows an example of
save operation. In this example 3 configuration files are
imported, and then getting values and saving them to files
are processed for all of the configurations.

List 6: Example of save operation using casave

from casave import SaveFileDict
import configuration1, configuration2, configuration3
for v in SaveFileDict.values():
 v.get()
 v.dbsave()

AutoSaver
One of the interesting applications of casave is

“AutoSaver” program. AutoSaver runs as background
process and monitors channels defined in the
configuration files. Whenever the connection of the
monitored channels becomes disconnected, saving
process is triggered. Usually IOC-readable “db” or “dbpf”
format is used for AutoSaver. Figure 1 shows how
AutoSaver acts.

When IOC is rebooted, monitored channels suddenly
become disconnected. Then AutoSaver saves last values
of monitored channels into files. During start up process
of the IOC the saved files can be read by IOC. Thus
content values of monitored channels are kept over reboot.
Because rebooting and saving proceed asynchronously,
this scenario is not always guaranteed. But even such
rough method is practically useful.

Figure 1: Behaviour of AutoSaver.

POTENTIAL OF PYTHON
In KEKB we have used Python only on workstations.

Most IOC’s in KEKB run with EPICS R3.13 on VxWorks.
Nowadays Linux IOC’s with EPICS R3.14 are gradually
introduced. We will consider the possibility to apply
Python on IOC level programming in Linux environment.

Python can be powerful tool for writing Device Support,
especially for the devices which require complicated

(4) read files at
start up time

(1) channels are
monitored

1.234

1.234

1.234

(3) values are
saved

IOC

AutoSaver

(2) when
disconnected

record file

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA16

Software Technology

121

control logics. Calculation record driven by Python script
can be powerful tool for quick development of runtime
database. Sequence program written in Python can be a
substitution of SNL/sequencer. In Python 2.3 or later
generator is introduced. Generator can be suitable to
describe sequence program in another manner than state
machine.

CONCLUSION
We have developed several Python libraries for

accelerator control systems. Although each tool has tiny
power, accumulation of such small developments makes
programming environment more efficient and
comfortable. Python is suitable language not only for

quick development but also for cumulative development
in long term.

REFERENCES
[1] N. Yamamoto et al., “KEKB Control System: The

Present and the Future”, PAC-99, New York, 29
Mar.-2 Apr. 1999, p. 343.

[2] N. Yamamoto et al., “Use of Object Oriented
Interpretive Languages in an Accelerator Control
System”, ICALEPCS'99, Trieste, Oct. 1999, p. 600.

[3] T. T. Nakamura, T. Katoh and N. Yamamoto,
“Development of the Python/Tk Widgets for the
Control System based on EPICS”, EPAC 2000,
Vienna, June 2000, p. 1865.

TPPA16 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

122

