
SOFTWARE FACTORY TECHNIQUES
APPLIED TO PROCESS CONTROL AT CERN

Mathias Dutour, CERN, Geneva, Switzerland

Abstract
The CERN Large Hadron Collider (LHC) requires

constant monitoring and control of quantities of
parameters to guarantee operational conditions. For this
purpose, a methodology called UNICOS (UNIfied
Industrial COntrols Systems) has been implemented to
standardize the design of process control applications. To
further accelerate the development of these applications,
we migrated our existing UNICOS tooling suite toward a
software factory in charge of assembling project, domain
and technical information seamlessly into deployable
PLC (Programmable logic Controller) – SCADA
(Supervisory Control And Data Acquisition) systems.

This software factory delivers consistently high quality
by reducing human error and repetitive tasks, and adapts
to user specifications in a cost-efficient way. Hence, this
production tool is designed to encapsulate and hide the
PLC and SCADA target platforms, enabling the experts to
focus on the business model rather than specific syntaxes
and grammars. Based on industry standard software, this
production tool together with the UNICOS methodology
[1] provides a modular environment meant to support
each process control expert to develop his solutions
quickly.

This article presents the user requirements of the
software factory and the chosen approach. Then the focus
moves to the benefits of the selected architecture, and
ends up with the results and a vision for further
improvements.

INTRODUCTION
The large scale process control applications developed

at CERN cannot be presented as a production line, but
rather as custom-designed applications in constant
evolution during their lifecycles. This evolution during
the development phase is dictated either by extensions to
the system or by applying corrections and implies the
need for often regenerating the process control
applications.

Therefore the maintenance on the long term of the tools
to produce such process control applications is critical.

With these ideas in mind, a software factory [2], also
called the UAB (UNICOS Application Builder) tool, was
designed to enable faster and cheaper code generation in a
context of often changing requirements.

DRIVING REQUIREMENTS
Besides the limitations of the existing code generation

tools [3], the users expect more support and efficiency
from the UAB, to focus only on their field of expertise
and to be able to reuse the assets they produced across
teams and projects.

Extensibility
Process control applications are subject to many

extensions. Typical examples: a new type of physical
device has to be integrated or additional parameters are
required for process control logic.

The UAB tool reflects this versatility and provides the
means to integrate seamlessly these new elements.
Additionally, the assets produced by the team for this
integration work, are valuable and directly reusable in a
different context for another team, thus increasing
productivity.

Since the domain knowledge involved in the
development of a process control application is not
platform specific (e.g.: PLC vendor independent), the
UAB tool provides the required support to guarantee the
reusability of the business assets produced as well. On the
same level, it also means the UAB tool can be easily
extended to address new platforms without starting from
scratch again and again.

Separation of Concerns
The inputs and outputs of the UAB tool are handled by

several people with different expertise and
responsibilities.

Typically the description of the project data, i.e. the
field-level description of the process control application,
is realized by a System developer, while its business logic
is the responsibility of a Domain expert. Finally the PLC
or the SCADA developer is responsible for the integration
and the deployment of the generated application.

For the UAB tool it is therefore important to decouple
these different aspects and keep them separate from the
UAB tool internals.

Consistency Checking Support
The consistency checking support offered by the UAB

tool is implemented at different levels:
First an unambiguous means to feed the information

into the code generation process is provided, enforced
through the use of predefined models.

Second, the UAB tool provides the users with powerful
means to validate the semantic consistency of the code
generation process inputs. The objective here is to detect
and fix issues as early as possible during the development
phase.

Finally, the UAB tool reports to the users any problems
identified during the code generation and provides
automatically hints for resolution.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA03

Software Technology

87

ARCHITECTURE
More than a simple tool, the UAB tool is rather an

approach to deal with automatic code generation.
The central idea of the UAB architecture is to decouple

the low-level information of the project (rather
descriptive), from the usage of this information (the
domain knowledge), from the project instantiation itself
(the platform-specific generated code).

The various packets implementing this approach
together with the stakeholders are presented below:

Raw Project Data and Grammar Check Packets
The Raw project data typically contains the information

describing the process control system itself, and is
therefore target-platform dependent (i.e. it describes
platform-specific PLC and SCADA information).
However, it doesn’t describe how this information shall
be used for the code generation process.

This project data is likely to be updated on a regular
basis during the project development phase, as the user
requirements are received and integrated.

The chosen format to gather this information is XML
(eXtended Markup Language), the ‘de facto’ industry
standard and vendor independent data–encapsulation
language. XML allows this data to be constrained by an
XML schema, presented here as the ‘Grammar check”
packet in the Figure 1. Unlike the Raw Project data files,
the Grammar check packet contains only structural
definition and is designed as an extensible asset to be
shared across process control projects.

The Grammar check packet structure is known by the
Code generation rules packet and used by the UAB Tool
packet to generate an internal representation of the Raw
project data. This internal representation is managed by
the JAXB [4][5](Java Architecture for XML Binding)
library. Thanks to JAXB, the extension or structural
modification of the Raw project data can be realized on
the fly with no need to modify the UAB Tool and
immediate availability to the Code generation rules.

Code Generation Rules Packet
Just like the orchestra conductor, the Code generation

rules don’t contain any data, but simply encapsulate the
business knowledge of the output expected. Their primary
goal is to drive the code generation through a set of
abstract services. (E.g.: same rules apply whatever the
PLC target platform is)

By focusing on the “What” rather than on the “How”,
the Domain expert in charge of the Code generation rules
can focus only on the system behaviour he expects. The
Code generation rules have been designed to enable
platform syntax abstraction, a step away from error prone
syntaxes.

To achieve their goal, the Code generation rules have at
their disposal two handles. A first handle on the Raw
project data to extract any relevant information, and a
second one on the code generation services of the UAB
Tool to dictate what to do with this information:

The flow of operations is the following: The Code

generation rules accesses the UNICOS Project data (Step
1), possibly verifying or pre-processing this data, then
calls abstracts services of the UAB tool (Step 2), which in
turn generates the related pieces of code with the proper
syntax (Step 3).

Concretely, the Code generation rules consist of a set of
files written in a scripting language. The Jython [6]
(Python for Java) language was chosen for this purpose,
as it integrates perfectly with the UAB Tool and provides
extensive functionality. Using such a scripting language
rather than a flat properties file allows very powerful
constructions. It allows the Domain expert, first to
perform consistency and semantic checks on the Raw

Figure 1: UAB tool context.

Figure 2: Project information.

Figure 3: Code generation principle.

TPPA03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

88

project data, and second to request code generation
services possibly adapting dynamically to the current
context.

UAB Tool Packet
The UAB tool main packet is actually a container for

platform–specific code generation plug–ins. To minimize
maintenance, the UAB Core itself follows the broker
design pattern and provides the plug–ins with an
extensive set of high level interfaces (see Figure 4). The
UAB Core is also in charge of other traditional aspects as
well, such as graphical user interface, command line
handling, file management, online error logging, etc...:

To achieve the objective of extensibility, the UAB Core

is highly configurable and has no static knowledge of its
plug-ins, the content of the Code generation rules, or even
any UNICOS concepts.

The chosen language for the development of the UAB
Core and its plug-ins is Java. Java permits high coding
productivity and abstraction mechanisms such as
introspection and runtime class loading, which are used
efficiently by the UAB Core to dynamically adapt to its
environment.

UAB Tool Plug-ins
The plug-ins managed by the UAB Core are

independent from each other and have different
responsibilities. They are only focussed on pure code
generation aspects; and know how to transform the
abstract requests of the Code generation rules into proper
vendor-specific source code. For example, one of our
plug-in is responsible for the Schneider UNICOS PLC
code generation and simply knows how to instantiate PLC
objects and map them in PLC memory. For the rest the
plug-in relies on the UAB Core mechanisms.

All plug-ins are built onto the same model. Each one
can interact with the Code generation rules, access the
Raw project data, and use UAB Core interfaces. Having a

reusable model makes it easy to develop and integrate
new plug-ins, even with little programming experience.

BENEFITS
The software factory approach, implemented here in the

context of process control, allows to focus on the
expected result rather than on the means to produce this
result. Mixing static configuration, auto-adaptive software
and abstract user directives, the UAB tool is a powerful
and yet simple rule–driven code generation environment.

The project technical data, business logic and tooling
configuration are clearly separated preventing the
spaghetti plate effect: The long term maintenance of the
process control applications is made safer and cheaper.

The multi-level error checking mechanisms addressing
grammar, syntax and semantic aspects filter-out many
mistakes which could be difficult to detect before
deployment and therefore very costly to track down and
fix.

Nonetheless, this approach is not self sufficient and
does enforce on the onward a rigorous design of the
project constructions to be used, such as the Grammar
check and Code generation rules packets. This is also to
the direct benefit of the quality of the process control
application produced.

CONCLUSION
At this date the UAB Core is being finalized while

various UNICOS plug-ins are well advanced, namely for
the PLC objects code generation on the Schneider Unity©
platform and their supervision counterpart on the PVSS
SCADA. Siemens Step7© plug-ins are under
development as well for objects and control logic code
generation.

However, the UAB is not limited to UNICOS or even
code generation, and its architecture can adapt to many
domains with a need for a flexible offline data processing
solution.

REFERENCES
[1] Philippe Gayet and Renaud Barillere, “UNICOS A

framework to build Industry like control systems:
Principles and methodology”, CERN, Geneva,
Switzerland.

[2] Jack Greenfield and Keith Short, “Moving to
Software Factories”, Microsoft© Corporation.

[3] G. Thomas, “LHC GCS: A model-driven approach
for automatic PLC and SCADA code generation”,
CERN, Geneva, Switzerland.

[4] The GlassFish community,
http://java.sun.com/javaee/community/glassfish/

[5] Joseph Fialli and Sekhar Vajjhala, Sun
Microsystems© Inc. “The Java™ Architecture for
XML Binding (JAXB)”, January 8th 2003.

[6] The Jython Project, http://www.jython.org.

Figure 4: UAB tool packet internals.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA03

Software Technology

89

