

LHC Software Architecture – Evolution Toward LHC Beam Commissioning

17/10/2007

ICALEPCS 2007 - Knoxville

Grzegorz Kruk on behalf of the LSA Team

- Project essentials
- Challenges
- LSA scope & key concepts
- Implementation
- Recent developments
- Summary

- Project essentials
- Challenges
- LSA scope & key concepts
- Implementation
- Recent developments
- Summary

Project essentials

Mission:

Provide homogenous software to operate the SPS, its transfer lines and the LHC

Note: high level application software

- Project shared between controls and operations
- Entirely written in Java

- Project essentials
- Challenges
- LSA scope & key concepts
- Implementation
- Recent developments
- Summary

LHC Challenge What will be LSA used for?

 Accelerate 2 beams to a very high energy around 27 km long ring

- In two pipes of a few cm diameter
- Squeeze them down to a size smaller than the diameter of a hair
- Get them collide
- Keep them colliding for at least 10 hours

Machine diversity challenge

 Different accelerators: cycling and noncycling

Different hardware types and front-ends

Different philosophy of operating these machines

Different users (operators)

Cycling vs. non-cycling machines

SPS is a cycling machine

- Sequence of cycles (super cycle) is played repeatedly in a synchronous way
- Length of all cycles is fixed

Cycling vs. non-cycling machines

LHC is different – there are no cycles

- Sequence of processes (i.e. injection, ramp, squeeze, physics) executed asynchronously
- Length of some of these processes is unknown in advance e.g. physics

And the system has to be...

Reliable

100% availability when there is a beam in the machine

Secure

- From unauthorized access
- Against unwanted actions

User friendly

Large amount of devices and data

- Project essentials
- Challenges
- LSA scope & key concepts
- Implementation
- Recent developments
- Summary

What is covered by LSA?

Optics

- Information about all devices
- Machine layout
- Twiss parameters
- ...
- Settings generation
 - Generation of initial settings based on optics
- Settings management & trim
 - Management of values for all parameters
 - Coherent modifications
 - History of changes and rollback
- Hardware exploitation
 - Equipment control
 - Sending settings to the hardware
- Equipment & beam measurements

Key Concepts

Parameter

- Settable or measurable entity on a device (real or virtual)
- e.g. LHCBEAM/QPH, MPLH.41994/K, MPLH4199/IREF

Context

- Cycle in a Super Cycle
- Beam process (LHC)

Setting

Value of a parameter for a given context

Parameters Space

Parameters are organized in hierarchies

Each hierarchy describes relations between parameters

- Change of a parameter affects all its dependant parameters
- Roots → usually physics parameters
 - e.g. momentum, tune, chromaticity,...
- Leaves -> hardware parameters
 - e.g. reference current on power converters

LHC Parameters Space

Domain model

- The domain model is quite complex
 - > 100 domain objects
 - ~350K lines of code
 - Currently ~40 GUI applications using services provided by LSA

It still evolves...

 Without a good architecture it would be very difficult to handle that complexity...

- Project essentials
- Challenges
- LSA scope & key concepts
- Implementation
- Recent developments
- Summary

Architecture - 3-tier approach

- We wanted to deploy the system in 3 physical layers due to:
 - Central access to the database and to the hardware
 - Central security
 - Caching
 - Reduced network traffic
 - Reduced load on client consoles
 - Scalability
 - Ease of web development
- With a minimal cost of 3-tier architectures
 - Complexity of programming
 - Testing & debugging
 - Deployment

tier, tire or tyre ??

- Plus we needed support for standard services
 - Transactions, remote access,...

Spring Framework

- Leading lightweight container
 - Alternative to Enterprise Java Beans (EJB)
- Plain Java Object (POJO) programming model
 - None or minimum dependency on the framework
- All standard services provided
 - Components orchestration, transactions, remoting, security, ...
- Seamless deployment in 2- and 3-tier mode
- Integration with many 3rd party products
- Very little effort to maintain the infrastructure

What we use from Spring

- XML based configuration (wiring)
 - Extremely simplified in Spring 2.0

- Database access
 - Spring JDBC abstraction layer
- Transactions management
- HTTP based remoting
- Testing framework
 - Excellent to test Data Access Objects
- Caching
 - Home made mechanism
 - Based on Spring AOP method call interception
 - Uses ehcache
 - Annotation based configuration

17/10/2007

Architecture

Client Tier

Modular

Layered

Distributed

Data model

- The system is highly data-driven
 - Single model (database schema) for
 - all machines
 - SPS, LEIR, LHC,...
- Result of several iterations
- Rationalized but nevertheless quite
 - complex
 - **■~170 tables**

Generic Applications

Data model & business logic are common for all accelerators Accelerator selection → we can reuse applications Choose the accelerator LHC PSB Mew TRIM application SCT (i) SPS (ii) A (ii) ene Parameter selection - SPSRING Supercycles ParticleTransfer OK Cancel System HW REFERENCE : TREE EXTR OCTUPOLES Cycle Beam Process GENERATION Mew TRIM application ION-ACC270-L18000 V1 SFT LONG PDOT (0->15600) LATTICE MEASUREMENT ION-L18000 V1 CNGS PDOT (15600->21600) LHC-FT500 PDOT V1 CNGS PDOT (21600->27600) OCTUPOLES ParticleTransfer Parameter selection - I HCRING LHC-LSS46-FT500 L432000ab V1 CNGS PDOT (27600->34125) RF-Hadron200 LHCMD25 92.55.270 PDOT V1 LHCRING RF-Hadron800 I HCb/Comp LHCREAMMOMENTUM Cycle Beam Process Show archived Select All MATCHING QUADRUPOLE ACTIR5 TestSC1 Tracking test 7TeV (0->1700) MATCHING SECTION DIPOL ACTSQIR5 TestSC1 Setting part:

Value Target Correction Trim History Time base:
SuperCycle Cycle/B MOMENTUM ACTSTART_PreCyc_sm18-precyclin NO SYSTEM ACTSTART SM18-INJECTION.BP0 Displayed Function: MBMREF OCTUPOLE ACTSTART SM18.IN.IECTION RP0 ORBIT-H Show archived Select All Show Field(s) Setting part:

Value Target Correction Trim History Time base:
SuperCycle Cycle/BeamProcess 4000 isplayed Function: LHCBEAM/MOMENTUN X Trim 3000 7000 6000 2000 Can **LHC Abort Trim** 1000 Sen **Cancel Last Trim** 3000 2000 5000 10000 15000 20000 25000 35000 30000 Send 2 Hardware ✓ Trim Exp Table Graph 200 1400 1600 500 ✓ Trim Expert Params Graph Table

- Project essentials
- Challenges
- LSA scope & key concepts
- Implementation
- Recent developments
- Summary

LHC Timing

- All LHC processes (e.g. injection, ramp,...) will be synchronized and triggered using timing events
 - Sent by the LHC Timing System [see J.Lewis' talk on Friday]
- LSA provides service to manage these events
 - Creation, modification
 - Loading to and unloading from the Timing System

LHC is dangerous

Airbus A380 at 700 kph

LHC Beam energy²

We have to be very careful...

- RBAC
- MCS
- MAD

Aircraft carrier at 11 knots

- R.Schmidt "Status of the LHC accelerator", November 2005
- M.Lamont, "LHC Collimators review", 30 June 2004

Role Based Access Control

 Created in the frame of the LHC at FermiLab Software (LAFS) collaboration

- Helps to protect:
 - Against unauthorized access to the equipment i.e. sending settings by inappropriate people
 - From doing bad things at bad time
 - Functionality reserved for specified groups of users (experts)
- When sending settings to the hardware verification of credentials is done by the middleware (CMW)
- Seamless integration in LSA thanks to the Spring remoting
 - No need to modify the API

Management of Machine Critical Settings (MCS)

- Aimed for the most critical and potentially dangerous devices/settings
- Complementary to the RBAC
 - Second layer of security
- Based on a digital signature scheme
 - To ensure data integrity
- Verified on the front-end level (FESA framework next talk)

Methodical Accelerator Design (MAD)

- Modeling and simulation tool for particle accelerators and beam lines
- Simulation of settings changes before applying them to the hardware

- Project essentials
- Challenges
- LSA scope & key concepts
- Implementation
- Recent developments
- Summary

Summary

Spring

- Stable and reliable architecture
 - ✓ We can concentrate on the domain which is complex enough
- For all accelerators we have the same:
 - Data model
 - Core logic
 - Applications

Good data model → Commonalities

- System used currently for the SPS, its transfer lines, the LEIR and the LHC hardware commissioning
- Crucial functionality for the LHC in place