A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

GSI

 
Paper Title Other Keywords Page
MOPCH076 Baseline Design for the Facility for Antiproton and Ion Research (FAIR) Finalized antiproton, ion, storage-ring, synchrotron 205
 
  • D. Krämer
    GSI, Darmstadt
  The baseline design for the future international facility FAIR has been worked out. The unique accelerator complex will provide high intensity ion beams ranging from antiprotons to uranium for nuclear matter and hadron physics studies. Radioactive beams are generated for nuclear structure and astrophysics experiments. Phase space compression utilizing stochastic and electron cooling allow for fundamental tests at highest precision. Centered around two fast ramping superconducting synchrotrons, ions are accelerated to a beam rigidity of up to 100 Tm and 300 Tm, respectively. Two dedicated storage rings serve for beam accumulation and cooling, providing unprecedented beam quality for experiments in the NESR and HESR storage rings. An overview of the layout of the accelerator complex and beam delivery systems is given. Ongoing R&D activities are reported; project status and international participation will be presented.  
 
MOPCH153 Peak Field Optimization for the Superconducting CH Structure simulation, linac, impedance, cryogenics 415
 
  • H. Liebermann, H. Podlech, U. Ratzinger
    IAP, Frankfurt-am-Main
  The Cross-Bar H-type (CH) cavity is a multi-gap drift tube structure operated in the H-210 mode which has been developed at the IAP Frankfurt and in collaboration with GSI. Based on detailed numerical simulations a 19 cell prototype cavity from massive Nb was realised. For optimization of the magnetic and electric peak fields, detailed numerical simulations with CST MicroWave Studio have been performed. After successful experiments on the superconducting prototype cavity calculations about improved drift tube geometries with respect to field emission took place. Additionally, the stem geometry was further improved by simulations.  
 
TUYFI01 Gantry Design for Proton and Carbon Hadrontherapy Facilities proton, ion, dipole, photon 964
 
  • U. Weinrich
    GSI, Darmstadt
  Using an isocentric gantry improves the efficiency and the flexibility of cancer treatments with ion beams (hadrontherapy). After an overview of the constraints imposed to these heavy equipments the gantries constructed for both proton and carbon ion facilities will be described. Finally, the new studies undertaken to decrease the cost of such equipments will presented.  
slides icon Transparencies
 
TUPCH012 Digital Techniques in BPM Measurements at GSI-ISI acceleration, pick-up, feedback, synchrotron 1019
 
  • A.A. Galatis, P. Kowina, K. Lang, A. Peters
    GSI, Darmstadt
  In this paper we describe new approaches for BPM measurements in hadron accelerators, which have strongly varying beam parameters such as intensity, accelerating frequency and bunch length. Following signal dynamic adjustment, direct digitalization and treatment of digitized data, we should reach a BPM resolution of 0.1mm. Interchangeability of this method between accelerators should be provided, which results in autonomous data treatment algorithms, free of external status and timing signalling. This should ensure the usability of the system in other bunched accelerator rings. Different operation modes are intended for allowing online storage of beam position data over full acceleration cycles as well as storage of beam waveforms in regions of acceleration that are of special interest e.g. transition, kicking, bunch gymnastics. First results of realised hardware/software combinations will be introduced and discussed.  
 
TUPCH014 Machine Protection by Active Current-transmission Control at GSI-UNILAC UNILAC, controls, ion, emittance 1025
 
  • H. Reeg, J. Glatz, N. Schneider
    GSI, Darmstadt
  • H. Walter
    Ing.-Buero H. Walter, Saulheim
  Toroidal beam current transformers (BCT) are installed at dedicated locations along the UNILAC accelerator. They provide an output signal with a fixed transimpedance. Dedicated signal pairs from consecutive transformers drive differential integrator stations. If preset protection levels are exceeded due to beam charge loss during the macro-pulse, fast interlock signals are generated. The actual beam pulse is instantaneously truncated by a fast beam chopper, avoiding any thermal damage or radio-activation of machine components.
A new BCT macro-pulse selector/display is presently under construction, which will provide time structure observation of multiple UNILAC macro-pulses, as well as long-term data logging. The hardware is set up with PXI components from National Instruments, running a multi-client/server controller software under LabViewRT®. Offline-analysis of the accumulated BCT data is expected to improve the protection system's operation and reliability. An overview of the system layouts, technical details, and relevant operational results will be presented.
 
 
TUPCH015 Integrated Beam Diagnostics Systems for HICAT and CNAO controls, diagnostics, linac, ion 1028
 
  • A. Reiter, A. Peters, M. Schwickert
    GSI, Darmstadt
  An integrated system for beam diagnostics was produced at GSI for the heavy-ion cancer treatment facility HICAT of the Heidelberg university clinics. A set of 92 manifold beam diagnostic devices allows automated measurements of the main beam parameters such as beam current, profile or energy. The beam diagnostic subsystem is completely integrated in the overall accelerator control system and its timing scheme. This paper reports on the underlying design patterns for the abstraction of the beam diagnostic devices towards the control system. Event-counting devices, i.e. scintillating counters and ionization chambers, are presented as examples of the diagnostic devices in the synchrotron and high-energy beam transport section of HICAT. Additionally, it is shown that the well-defined building blocks of the beam instrumentation made it possible to prepare almost identical devices including the manual control software, to be used in the CNAO facility (Centro Nazionale di Adroterapia Oncologica) presently under construction in Pavia, Italy.  
 
TUPCH115 Status of the 70 MeV, 70 mA CH Proton-DTL for FAIR quadrupole, proton, impedance, antiproton 1283
 
  • G. Clemente, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt-am-Main
  • L. Groening
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
  The CH-type cavity shows promising features in the low and medium beta range: its high accelerator gradient and the high level of shunt impedance together with the compact transverse dimensions make this new cavity a good candidate for proton acceleration up to 100 MeV. That's why GSI has decided to base the new high current proton injector for the new FAIR facility on that structure: the operating frequency will be 352 MHz with an injection energy of 3 MeV. In order to improve the technical experience on this new kind of structure, IAP has built a model consisting of 8 equidistant gaps for a total cavity-length of 60 cm. Several design options with respect to welding, alignement, cooling and RF joints were studied and compared each other. A new concept for the end-cells geometry will result in the desired flatness of the electric field along the cavity axis and, at the same time, allow effective integration of internal quadruple lenses. Finally, the electric quadruple content of CH-structure gaps is listed in dependence on the geometry of the cell.  
 
TUPCH173 Understanding of Ion Induced Desorption Using the ERDA Technique ion, target, vacuum, beam-losses 1423
 
  • M. Bender, H. Kollmus
    GSI, Darmstadt
  • W.A. Assmann
    LMU, München
  In heavy ion synchrotrons like SIS18 at GSI high energetic ions can impact on the beam pipe and release gas molecules. This so called "ion induced desorption" deteriorates the accelerator vacuum and as a consequence the beam life time and luminosity. To minimize the pressure increase it is necessary to understand the physics of ion induced desorption. The elastic recoil ion detection analysis (ERDA) can give a time resolved element specific depth profile of a probe under ion bombardment. A UHV-ERDA setup has been installed at GSI to investigate correlations between desorption and material properties as well as its dose dependant evolution. Recent experiments have shown the influence of the surface state of a sample such as the oxide layer on steel as well as the importance of a high-purity bulk such as in silicon and OFHC copper. We will present the results of gold coated copper in comparison to stainless steel as applicable materials for accelerators.  
 
TUPCH174 Vacuum Issues and Challenges of SIS18 Upgrade at GSI dipole, ion, quadrupole, vacuum 1426
 
  • H. Kollmus, M.C. Bellachioma, M. Bender, A. Kraemer, J. Kurdal, H.R. Sprenger
    GSI, Darmstadt
  For the present experiment programm and for the planned FAIR facility the heavy ion synchroton SIS18 at GSI has to reach the space charge limit for highly and intermediate charged heavy ions. For the booster mode of SIS18 the number of 1x1012 ions per second in 4 Hz operation mode is specified. To achive this requirement a dynamic vacuum in the 10-12 mbar region has to be garanteed. The poster will present the status of recent R & D work concerning the SIS18 vacuum upgrade, with a focus on the new GSI NEG coating facility and on ion-induced desorption measurements using advanced ion beam analysis.  
 
TUPLS035 The HITRAP Decelerator Project at GSI ion, HITRAP, ESR, rfq 1568
 
  • L.A. Dahl, W. Barth, M. Kaiser, O.K. Kester, H.J. Kluge, W. Vinzenz
    GSI, Darmstadt
  • B. Hofmann, U. Ratzinger, A.C. Sauer, A. Schempp
    IAP, Frankfurt-am-Main
  The heavy ion trap (HITRAP) at GSI is a funded project since 2004. Highly charged ions up to U92+ provided by the GSI accelerator facility will be decelerated and subsequently injected into a Penning trap for further cooling almost to rest. A combination of an IH- and an RFQ-structure decelerates the ions from 4 MeV/u down to 6 keV/u. In front of the decelerator a double-drift-buncher-system provides for phase focusing and a final debuncher integrated in the RFQ-tank reduces the energy spread in order to improve the efficiency for beam capture in the cooler trap. The report gives an overview of the final beam dynamic design of the entire decelerator. Besides the construction status of the cavities, particular beam diagnostic features due to the short pulses of 1 μs and 108 MHz bunch frequency, and the measures for technical and controls integration into the existing GSI accelerator complex are presented. Finally the recent time schedule and considerations for commissioning are shown.  
 
TUPLS036 Status of the Linac-commissioning for the Heavy Ion Cancer Therapy Facility HIT rfq, ion, linac, proton 1571
 
  • M.T. Maier, R. Baer, W. Barth, L.A. Dahl, C. Dorn, T.G. Fleck, L. Groening, C.M. Kleffner, C. Müller, A. Peters, B. Schlitt, M. Schwickert, K. Tinschert, H. Vormann
    GSI, Darmstadt
  • R. Cee, B. Naas, S. Scheloske, T. Winkelmann
    HIT, Heidelberg
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt-am-Main
  A clinical facility for cancer therapy using energetic proton and ion beams (C, He and O) is under construction and will be installed at the Radiologische Universitätsklinik in Heidelberg, Germany. It consists of two ECR ion sources, a 7 MeV/u linac injector and a 6.5 Tm synchrotron to accelerate the ions to final energies of 50-430 MeV/u. The linac comprises a 400 keV/u RFQ and a 7 MeV/u IH-DTL operating at 216.8 MHz. In this contribution the current status of the linear accelerator is reported. After first tests with 1H+ beam of the RFQ at GSI, the commissioning of the accelerator in Heidelberg has already started. The commissioning with beam is performed in three steps for the LEBT, the RFQ and the IH-DTL. For this purpose a versatile beam diagnostic test bench has been designed. It consists of a slit-grid emittance measurement device, transverse pick-ups providing for time of flight energy measurements, SEM-profile grids and different devices for beam current measurements. This paper will provide for a status report of the linac-commissioning.  
 
TUPLS041 The HITRAP RFQ Decelerator at GSI rfq, HITRAP, ion, emittance 1586
 
  • B. Hofmann, A. Schempp
    IAP, Frankfurt-am-Main
  • O.K. Kester
    GSI, Darmstadt
  The HITRAP linac at GSI will decelerate ions from 5 MeV/u to 6 keV/u for experiments with the large GSI Penning trap. The ions, provided by the GSI accelerator facility, will be decelerated at first in the existing experimental storage ring (ESR) down to an energy of 5 MeV/u, and injected into a new IH decelerator and decelerated to 5oo keV/u. The following 4- Rod type RFQ will decelerate the ion beam from 5oo keV to 6 keV/u. The RFQ has been designed and will be built at the Institute for Applied Physics in Frankfurt. The properties of the RFQ decelerator and the status of the project will be discussed.  
 
TUPLS042 First Cryogenic Tests of the Superconducting CH-structure cryogenics, pick-up, resonance, coupling 1588
 
  • H. Podlech, C. Commenda, H. Klein, H. Liebermann, U. Ratzinger, A.C. Sauer
    IAP, Frankfurt-am-Main
  The CH-structure is a new multi-cell drift tube structure operated in the TE21-mode and is well suited for the acceleration of low and medium beta ion and proton beams. Due to the mechanical stiffness room temperature as well as superconducting CH-cavities can be realised. A 19-cell, beta=0.1 superconducting CH-prototype cavity has been developed and built. First cryogenic tests have been performed at 4.5 K in Frankfurt successfully. An effective accelerating voltage of 3.6 MV has been achieved so far. This corresponds to an electric peak field of 23 MV/m. Actual measurements aim on a localisation of possible field emission centers, afterwards further surface preparation will take place.  
 
TUPLS082 The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) linac, proton, target, space-charge 1690
 
  • L.P. Chau, O. Meusel, U. Ratzinger, A. Schempp, K. Volk
    IAP, Frankfurt-am-Main
  • M. Heil
    FZ Karlsruhe, Karlsruhe
  About 40ns long proton pulses with an energy of 120keV and currents of up to 200mA will be produced at the 150kV high current injector with a rep.rate of up to 250kHz. The main acceleration will be done by a 175MHz-RFQ. After this section the proton bunches will have an energy of about 1.7MeV. A 4-gap cavity will allow for an energy increase up to 2.2MeV.In order to get 1ns short pulses at the Li-7-Target we propose a buncher-system of the Mobley-Type*, whereby periodic deflection at one focus of a dipole-magnet guides the bunche train from the linac on different paths to the other focus, where the n-production traget is located in the time focus.By 7Li(p,n)B·107 reactions low-energy neutron bunches will be produced with an averaged integrated flux-density of 4*107/(cm2 s) at a distance of 0.4m. The upper limit for the neutron spectra will be 500keV. The main challange with respect to this buncher is the strong space charge action, which has to be treated by careful particle simulations. FRANZ is among other duties well suited for (n,gamma)-cross-sectional measurements with astrophysical relevance**/***. It is characterised by high n-intensities and by its pulse-structure.

*Phys. Rev. 88(2), 360-361 (1951). **Phys. Rev. C 71, 025803 (2005).***Phys. Rev. Lett. 94, 092504 (2005).

 
 
TUPLS086 Charge Breeding Exploration with the MAXEBIS ion, electron, HITRAP, injection 1702
 
  • H.Z. Zimmermann
    LMU, Garching
  • R. Becker, M.K. Kleinod
    IAP, Frankfurt-am-Main
  • O.K. Kester
    GSI, Darmstadt
  The demand of exotic ions prior to their injection into an accelerator has driven the development of the charge breeding method. Existing facilities like REX-ISOLDE or ISAC at TRIUMF are already using a charge state booster for the post acceleration of radioactive ions. Planned facilities like EURISOL for instance have identified the need of a breeding system. In order to be comparable to the efficiency to a brut force acceleration employing stripper, the efficiency of a charge breeder has to be maximized and the breeding time has to be shortened comparing the existing breeder systems. Therefore the exploration and optimization of the charge state breeding is mandatory and supported by the EU. The Frankfurt MAXEBIS has been modified within the past years towards high current electron beam and external injection of alkaline ions by a surface ionisation source. The electron gun, the inner electrode structure and the collector of the MAXEBIS have been modified. The system has been shipped to GSI and re-assembled. The goals of the following experiments will be systematic studies of the breeding efficiency. The new setup and first experimental results will be presented.  
 
TUPLS141 Measured Residual Radioactivity Induced by U Ions of Energy 500 MeV/u in a Cu Target target, ion, radiation, radioactivity 1834
 
  • E. Mustafin, H. Iwase, E. Kozlova, D. Schardt
    GSI, Darmstadt
  • A. Fertman, A. Golubev
    ITEP, Moscow
  • R. Hinca, M. Pavlovic, I. Strasik
    STU, Bratislava
  • N. Sobolevskiy
    RAS/INR, Moscow
  Several laboratories in the world have started or plan to build new powerful ion accelerators. These facilities promise to provide very valuable tools for experiments in fundamental nuclear physics, physics of high energy density in matter and for medical applications as well. One of the most important problems that have to be solved during the design stage is the radiation protection of the accelerator. Due to the complexity, it is hardly possible to obtain reliable radionuclide production data for accelerator structure materials from radiation transport codes. Thus, the experimental data which can be measured at the presently existing facilities are necessary for the evaluation of the induced levels of radioactivity around intense heavy ion accelerators. The Uranium beam losses are the most dangerous ones in the FAIR facility. Results of the measurement of activation induced by U beam with energy of E = 500 MeV/u in the copper target are presented in this paper.  
 
WEPCH117 Beam Dynamics of an Integrated RFQ-drifttube-combination rfq, ion, simulation, ion-source 2191
 
  • A. Bechtold, M. Otto, A. Schempp
    IAP, Frankfurt-am-Main
  In the frame of a collaboration with the GSI in Darmstadt an RFQ-Drifttube-Combination for the Heidelberg cancer therapy center HICAT has been designed, built and successfully beam tested at the IAP Frankfurt. The integration and combination of both an RFQ and a rebunching drifttube unit inside a common cavity forming one single resonant RF-structure has been realized for the first time with this machine. The results of the beam measurements and questions about the beam dynamics simulations of such a combination have been investigated in detail with the code RFQSIM.  
 
WEPCH158 Status of the Hadrontherapy ETOILE-Project in Lyon proton, ion, radiation, hadron 2299
 
  • M.J. Bajard
    UCBL, Villeurbanne
  The ETOILE project is the French program for carbon ion beams in cancer treatment. It is now in the final phase. However its development is not only aiming at the building of a medical facility, around the project a broad set of medical and scientific programs have been initiated. The project has been supported by the University of Lyon and extended to the Rhône-Alpes Region and then gained a national visibility with governmental recognition. Many studies have been financed by ETOILE: in beam PET with new solutions, organ motion modelization, tumor cell radioresistance, medico-economical simulation and epidemiological previsions. The facility will be able to produce carbon ion beams and protons. Three treatment rooms are planned, two with horizontal beams and one with an isocentric gantry. The facility will be build in Lyon, through a process using as much as possible well established technology with the other facilities in Europe. The cost will be around 105 M€ afforded by loans and subventions. The subventions are funded from the Rhône-Alpes Region, the city of Lyon and the ministries of Health and Research. The running cost of the centre, for one thousand patients per year, is estimated to be 21 M€.  
 
WEPCH159 Accelerator Systems for Particle Therapy synchrotron, ion, proton, beam-transport 2302
 
  • S.P. Møller, F.S. Albrechtsen, T. Andersen, A. Elkjaer, N. Hauge, T. Holst, I. Jensen, S.M. Madsen
    Danfysik A/S, Jyllinge
  • K. Blasche, B. Franczak
    GSI, Darmstadt
  • S. Emhofer, H.K. Kerscher, V.L. Lazarev, H. Rohdjess
    Siemens AG, Medical Solutions, Erlangen
  Danfysik and Siemens have entered a cooperation to market and build Particle Therapy* systems for cancer therapy. The systems are based on the experience from GSI together with a novel design of a synchrotron and Siemens experience in oncology. The accelerator systems will include an injector system (7 MeV/u proton and light ions), a synchrotron and a choice of fixed-angle horizontal and semi-vertical beamlines together with gantry systems. The slowly extracted beam will cover the energy ranges of 48-250 MeV for protons and 88-430 MeV/u for carbon ions. The extraction time will be up to 10s with intensities well beyond the needs of scanning beam applications. We will describe the layout of such a system and present details on some of the subsystems.

*Particle Therapy is a work in progress and requires country-specific regulatory approval prior to clinical use.

 
 
WEPLS087 Status of the Development of the FAIR Superconducting Magnets dipole, superconducting-magnet, quadrupole, ion 2577
 
  • G. Moritz
    GSI, Darmstadt
  For the planned 'Facility for Antiprotons and Ion Research' (FAIR), a variety of superconducting magnets is foreseen. The synchrotrons SIS 100 and SIS 300 will use fast-pulsed superferric and superconducting cos (theta) magnets. The storage ring CR and the SuperFRS will be equipped with large-scale superferric magnets, while in the storage ring HESR RHIC-type magnets are foreseen. The status of the R&D activities will be presented.  
 
WEPLS090 Full Length Superferric Dipole and Quadrupole Prototype Magnets for the SIS100 at GSI: Status of the Design and Manufacturing dipole, quadrupole, synchrotron, ion 2583
 
  • A.D. Kovalenko, N.N. Agapov, A.V. Alfeev, H.G. Khodzhibagiyan, G.L. Kuznetsov, V.V. Seleznev, A.Y. Starikov
    JINR, Dubna, Moscow Region
  • E. Fischer, G. Moritz, C. Muehle, P.J. Spiller
    GSI, Darmstadt
  • A.K. Kalimov
    St. Petersburg State Polytechnic University, St. Petersburg
  • A.V. Shabunov
    JINR/LHE, Moscow
  The SIS100, one of the two basic accelerators of the future Facility for Antiproton and Ion Research FAIR at GSI, should provide acceleration of U28+ and proton beams for 0.5 s with a pulse repetition rate of 1 Hz. In the accelerator magnetic system superferric 2 T dipoles of about 3 m length and 35 T/m quadrupoles of about 1 m length will be used. The magnet coils are made from hollow NbTi composite cable cooled with two-phase helium flow at 4.5 K. The maximum operating current of 7500 A is supposed. The lattice comprises 108 dipoles and 168 quadrupoles. The elliptic beam pipe inner sizes have been fixed to 130x60 mm2 for the dipole and 135x65 mm2 for the quadrupole The design approach is based on the improved versions of the Nuclotron fast-cycling magnets that provide significant less AC loss at 4.5 K, better quality of the magnetic field and a higher long-term mechanical stability of the magnet coils. The AC losses in the magnets for the strongest SIS100 operating cycle at 4.5 K are expected to be about 13 W/m and 17 W/m in the full length prototype dipole and quadrupole magnets respectively.  
 
WEPLS091 Analysis of the Superferric Quadrupole Magnet Design for the SIS100 Accelerator of the FAIR Project quadrupole, dipole, synchrotron, ion 2586
 
  • E. Fischer, G. Moritz
    GSI, Darmstadt
  • H.G. Khodzhibagiyan, A.D. Kovalenko
    JINR, Dubna, Moscow Region
  • R.V. Kurnyshov, P.A. Shcherbakov
    IHEP Protvino, Protvino, Moscow Region
  The heavy ion fast-cycling synchrotron SIS100 is the "workhorse", of the future Facility for Antiproton and Ion Research FAIR at GSI in Darmstadt. The main lattice parameters of the accelerator are defined now so the main engineering problems of the new superferric magnets should be analyzed and solved too. We present the results of finite element calculations and compare them with the experimental data from investigation of the model magnets to characterize the expected AC loss properties of the full length prototype quadrupole. We discuss the appropriate new coil structure aimed at minimizing the heat releases at 4.5 K, but providing the requested long-term mechanical stability against dynamic Lorentz forces and thermal cooling cycles as well.  
 
WEPLS093 3D Field Computation for the Main Prototype Magnets of the SIS100 Accelerator of the FAIR Project dipole, quadrupole, multipole, magnet-design 2592
 
  • P.A. Shcherbakov
    IHEP Protvino, Protvino, Moscow Region
  • E. Fischer
    GSI, Darmstadt
  • R.V. Kurnyshov
    Electroplant, Moscow
  Fast cycling superferric magnets are planned for use in the new international accelerator Facility for Antiprotons and Ion Research (FAIR) at GSI, Darmstadt. The dipoles and quadrupoles have to provide the required field quality from the injection field of 0.25T and 4.3T/m up to the maximum values of 2.1T and 35T/m respectively. The complex 3D magnetic field distribution due to the longitudinal component Bz near the yoke end regions and the presence of eddy currents also in the bulk construction elements as well as in a mechanical stable beam pipe design can create unacceptable static and dynamic nonlinearities. The detailed knowledge of these effects is necessary to control the field quality for all operating cycles to be provided by the SIS100 accelerator. We discuss the methodical problems of 3D finite element calculations (ANSYS) of the local and the integral nonlinearities, considering also the problems caused by the various nonlinear and anisotropic material properties and by the structure elements of the yoke and beam pipe. The calculated integral static and the affected by eddy currents harmonic coefficients are presented.  
 
WEPLS094 3D Magnetic Field and Eddy Current Loss Calculations for Iron Dominated Accelerator Magnets using ANSYS Compared with Results of Noncommercial Codes simulation, dipole, synchrotron, quadrupole 2595
 
  • P.A. Shcherbakov
    IHEP Protvino, Protvino, Moscow Region
  • E. Fischer
    GSI, Darmstadt
  • R.V. Kurnyshov
    Electroplant, Moscow
  The design of fast ramped superferric magnets with repetition rates in the order of 1Hz requires reliable software tools to calculate the complex 3D magnetic field quality as well as the impact of eddy current and hysteresis loss. Various technological construction details should be taken into account to obtain a high field quality. We present a methodical study of these questions based on ANSYS calculations for simplified dipole models. The details of these analysis are compared with recently published results obtained by different special codes, i.e. an integral and the FIT method. The time dependences of eddy current power due to longitudinal magnetic field component at the yoke ends, the transient field distribution in the yoke volume and the total eddy current loss are investigated, choosing the identical geometry with the same magnetic and electric properties of the lamination steel used by the other codes. The conclusions for the application potential of the different methods are discussed.  
 
WEPLS107 Comparative Study of Inter-strand Coupling Current Models for Accelerator Magnets dipole, coupling, LHC, CERN 2631
 
  • R. de Maria, B. Auchmann, S. Russenschuck
    CERN, Geneva
  "Inter-Strand Coupling Currents" (ISCCs) contribute to field errors and losses in Rutherford-type superconducting cables in the time- transient regime. The field change induces eddy currents in loops formed by the superconducting twisted strands and the resistive matrix. In the ROXIE program two models are implemented to simulate ISCCs in a magnet cross-section: A network model uses an electric circuit to represent the geometry of the twisted strands and their resistive contacts; an analytical model simplifies the network equations to determine an equivalent cable magnetization from an average field sweep over the cable. The implementation of the models in ROXIE allows to combine them with models for "Persistent Currents" and "Inter-Filament Coupling Currents". The non-linear iron yoke can be taken into account as well. The predictions of different ISCC models with regard to losses and field errors are compared for two design versions of the LHC main dipole. We find that as far as field quality is concerned, the models perform equally well. As for losses, however, the analytical model cannot capture the complexity of the problem and computes lower losses than the network model.  
 
THPCH095 Transverse Damping System at SIS100 feedback, damping, kicker, injection 3014
 
  • V. Zhabitsky, E. Gorbachev, N.I. Lebedev
    JINR, Dubna, Moscow Region
  • U. Blell, P.J. Spiller
    GSI, Darmstadt
  The basic concept and main design features of the transverse damping system at the SIS100 synchrotron are presented. SIS100 with five times the circumference of the current SIS18 accelerator is a part of the Facility for Antiproton and Ion Research (FAIR) which is the next accelerator complex being constructed on the GSI site. The existing GSI accelerators serve as injector for SIS100. The SIS100 synchrotron will provide ion beams of high intensities which can lead to transversal and longitudinal beam instabilities. In order to damp the coherent transverse beam oscillations, a transverse feedback system (TFS) is going to be implemented in SIS100. The TFS presented is a feedback with a real-time digital signal processing for damping of transverse injection oscillations, feedback curing transverse coupled bunch instabilities, and excitation of transverse oscillations for beam measurements and other applications. The data on the bandwidth and gain of the TFS as well as the general description of the central processing unit are presented.