Paper | Title | Page |
---|---|---|
TUAA06 | Recent Progress of ESS Spoke and Elliptical Cryomodules | 474 |
|
||
The ESS accelerator high level requirements are to provide a 2.86 ms long proton pulse at 2 GeV at repetition rate of 14 Hz. This represents 5 MW of average beam power with a 4% duty cycle on target. In a framework of collaboration between IPN Orsay, CEA Saclay and ESS, prototype spoke and medium and high beta elliptical cavities and cryomodules have been studied, constructed and tested. After a description of the ESS project and the accelerator layout, this paper will focus on the recent progress towards realization of the detailed design, the manufacturing of the first components of the prototype cryomodules and the first test results of some of the main critical elements such as SRF cavities and cold tuning systems. | ||
![]() |
Slides TUAA06 [17.400 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB070 | Design of Dressed Crab Cavities for the HL-LHC Upgrade | 1284 |
|
||
The HL-LHC upgrade relies on a set of RF crab cavities for reaching its goals. Two parallel concepts, the Double Quarter Wave (DQW) and the RF Dipole (RFD), are going through a comprehensive design process along with preparation of fabrication in view of extensive tests with beam in SPS. High Order Modes (HOM) couplers are critical in providing damping in RF cavities for operation in accelerators. HOM prototyping and fabrication have recently started at CERN. In this paper, an overview of the final geometry is provided along with an insight in the mechanical and thermal analyses performed to validate the design of this critical component. Emphasis is also given to material selection, prototyping, initial fabrication and test campaigns that are aimed at fulfilling the highly demanding tolerances of the couplers. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB109 | ESS Spoke Cryomodule and Test Valve Box | 1400 |
|
||
ESS project aims being the world’s most powerful neutron source feeding multidisplinary researches. The superconducting part of the ESS linear accelerator includes 28 b=0.5 352.2 MHz SRF niobium double Spoke cavities. Paired in 13 cryomodules and held at 2K in a saturated helium bath those cavities will generate of an accelerating field of 9MV/m. The prototype Spoke cryomodule holds two cavities and their RF power couplers and integrates all the interfaces necessary to be operational within the linac machine. It is now being fabricated and its assembly will be performed with dedicated tooling and procedures in and out of the clean room. This prototype will be tested by the end of 2015 at IPNO site and then at full power at FREIA (Uppsala university) test stand. A valve box has thus been designed to take into account the specific features of this prototype cryomodule and of the cryogenic environments of both test sites. This valve box is also considered as a prototype of the cryogenic distribution of the linac Spoke section. This element will then be used for the tests of the series cryomodules. We propose to present this prototype Spoke cryomodule for ESS and the test valve box. | ||
![]() |
Poster THPB109 [2.852 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB110 | Procurements for LCLS-II Cryomodules at JLab | 1405 |
|
||
Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515. The Thomas Jefferson National Accelerator Facility is currently engaged, along with several other DOE national laboratories, in the Linac Coherent Light Source II project (LCLS II). The SRF Institute at Jefferson Lab will be building 1 prototype and 17 production cryomodules based on the TESLA / ILC / XFEL design. Each cryomodule will contain eight nine cell cavities with coaxial power couplers operating at 1.3 GHz. Procurement of components for cryomodule construction has been divided amongst partner laboratories in a collaborative manner. JLab has primary responsibility for six procurements include the dressed cavities, cold gate valves, higher-order-mode (HOM) and field probe feedthroughs, beamline bellows cartridges, cavity tuner assemblies and HOM absorbers. For procurements led by partner laboratories, JLab collaborates and provides technical input on specifications, requirements and assembly considerations. This paper will give a detailed description of plans and status for JLab procurements. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB115 | TRIUMF's Injector and Accelerator Cryomodules | 1409 |
|
||
TRIUMF's ARIEL project includes a 50 MeV-10mA electron linear accelerator (e-Linac) using 1.3 GHz superconducting technology. The accelerator consists of three cryomodules; an injector cryomodule with one cavity and two accelerating cryomodules with two cavities each. One injector and one accelerator have been assembled and commissioned at TRIUMF with a second injector cryomodule being assembled for VECC in Kolkata. Both Injector and Accelerator cryomodules utilize a top-loaded cold mass design contained in a box-type cryomodule; design and early test results of both cryomodules are presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB116 | Modified ELBE Type Cryomodules for the Mainz Energy-Recovering Superconducting Accelerator MESA | 1413 |
|
||
At the Institut für Kernphysik of Johannes Gutenberg-Universität Mainz, the new multiturn energy recovery linac MESA is under construction. Two modified ELBE-type cryomodules with two 9-cell TESLA/XFEL cavities each will provide an energy gain of 50 MeV per turn. Those are currently in the production process at RI Research Instruments GmbH, Bergisch Gladbach, Germany. Modifications for the tuner and the HOM damper are under development. In addition, a 4K/2K Joule Thomson expansion stage will also be integrated into the cryomodule. The current status of the development of the cryomodules and their modifications will be discussed. | ||
![]() |
Poster THPB116 [1.472 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB119 | LCLS-II 1.3 GHz Cryomodule Design – Modified TESLA-Style Cryomodule for CW Operation | 1417 |
|
||
Funding: Work supported, in part, by the US DOE and the LCLS-II Project. We will present the design of the 1.3 GHz cryomodule for the Linear Coherent Light Source upgrade (LCLS-II) at SLAC. Fermilab is responsible for the design of this cryomodule, a modified TESLA-style cryomodule to accommodate continuous wave (CW) mode operation and LCLS-II beam parameters, consisting of eight 1.3 GHz superconducting RF cavities, a corrector magnet package, and instrumentation. Thirty-five of these cryomodules, approximately half built at Fermilab and half at Jefferson Lab, will become the main accelerating elements of the 4 GeV linac. The modifications and special features of the cryomodule include: thermal and cryogenic design to handle high heat loads in CW operation, magnetic shielding and cool-down configurations to enable high quality factor (Q0) performance of the cavities, liquid helium management to address the different liquid levels in the 2-phase pipe with 0.5% SLAC tunnel longitudinal slope, support structure design to meet California seismic design requirements, and with the overall design consistent with space constrains in the existing SLAC tunnel. The prototype cryomodule assembly will begin in August 2015 and is to be completed in early 2016. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRAA03 | High Gradient Performance in Fermilab ILC Cryomodule | 1432 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. Fermilab has assembled an ILC like cryomodule using U.S. processed high gradient cavities and achieved an average gradient of 31.5 MV/m for the entire cryomodule. Test results and challenges along the way will be discussed. |
||
![]() |
Slides FRAA03 [5.878 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRAA05 | A 1.3 GHz Cryomodule with 2x9-Cell Cavity for SETF at Peking University | 1443 |
|
||
Funding: Work supported by National Basic Research Project (No. 2011CB808304 and 2011CB808302)and NDRC project. The straight beam line of SETF at Peking University is under construction, which consists of a DC-SRF photoinjector and a superconducting linac with two 9-cell cavities. Stable operation of the DC-SRF photoinjector has been realized and the design, manufacture and assembly of the cryomodule with two 9-cell cavities have been completed. Improved capacitive coupling RF power coupler and fast tuner with piezo are adopted |
||
![]() |
Slides FRAA05 [3.709 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRAA06 | Construction and Performance of FRIB Quarter Wave Prototype Cryomodule | 1446 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The driver linac for the Facility for Rare Isotope Beams (FRIB) will require the production of 48 cryomodules. FRIB has completed the fabrication and testing of a β=0.085 quarter-wave cryomodule as a pre-production prototype. This cryomodule qualified the performance of the resonators, fundamental power couplers, tuners, and cryogenic systems of the β=0.085 quarter-wave design. In addition to the successful systems qualification; the ReA6 cryomodule build also verified the FRIB bottom up assembly and alignment method. The lessons learned from the ReA6 cryomodule build, as well as valuable fabrication, sourcing, and assembly experience are applied to the design and fabrication of FRIB production cryomodules. This paper will report the results of the β=0.085 quarter-wave cryomodule testing, fabrication, and assembly; production implications to future cryomodules will also be presented. Authors: |
||
![]() |
Slides FRAA06 [10.892 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRBA01 | Technical and Logistical Challenges for IFMIF-LIPAC Cryomodule Construction | 1453 |
|
||
This paper provides an overview of the final design and fabrication status of the IFMIF cryomodule, including the design issues, and deals with the strategies implemented in order to mitigate the main technical and logistical risks identified. The seismic constraints as well as licensing requirements, transportation issue and assembly process are also addressed. The IFMIF cryomodule presented here will be part of the LIPAc project (Linear IFMIF Prototype Accelerator). It is a full scale prototype of one of the IFMIF accelerators, from the injector to the first cryomodule, aiming at validating the technical options for the future accelerator-based D-Li neutron source to produce high intensity high energy neutron flux for testing of candidate materials for use in fusion energy reactors. The cryomodule contains all the equipment to transport and accelerate a 125 mA deuteron beam from an input energy of 5 MeV up to 9 MeV. It consists of a horizontal cryostat of about 6 m long, 3 m high and 2 m wide, which includes 8 superconducting HWRs for beam acceleration working at 175 MHz and at 4.5 K, 8 power couplers to provide RF power to cavities, and 8 Solenoid Packages as focusing elements. | ||
![]() |
Slides FRBA01 [9.263 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRBA02 | Crab Cavity and Cryomodule Development for HL-LHC | 1460 |
|
||
The HL-LHC project aims at increasing the LHC luminosity by a factor 10 beyond the design value. The installation of a set of RF Crab Cavities to increase bunch crossing angle is one of the key upgrades of the program. Two concepts, Double Quarter Wave (DQW) and RF Dipole (RFD) have been proposed and are being produced in parallel for test in the SPS beam before the next long shutdown of CERN accelerator’s complex. In the retained concept, two cavities are hosted in one single cryomodule, providing thermal insulation and interfacing with RF coupling, tuning, cryogenics and beam vacuum. This paper overviews the main design choices for the cryomodule and its different components, which have the goal of optimizing the structural, thermal and electro-magnetic behavior of the system, while respecting the existing constraints in terms of integration in the accelerator environment. Prototyping and testing of the most critical components, manufacturing, preparation and installation strategies are also described. | ||
![]() |
Slides FRBA02 [4.678 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |