Paper | Title | Page |
---|---|---|
MOAA01 | FRIB Project: Moving to Production Phase | 1 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The Facility for Rare Isotope Beams (FRIB) is based upon a high power heavy ion driver linac under construction at Michigan State University under a cooperative agreement with the US DOE. The construction of conventional facilities already started in the summer, 2013, and the accelerator production began from the summer, 2014. FRIB will accelerate all the stable ion beams from proton to uranium beyond a beam energy of 200 MeV/u and up to a beam power of 400 kW to produce a great number of various rare isotopes using SRF linac. The FRIB SRF driver linac makes use of four kinds of SRF structures. Totally 332 two gap cavities and 48 cryomodules are needed. All SRF hardware components have been validated and are now moving to production. The SRF infrastructure also has been constructed in MSU campus. This talk will present FRIB project and challenges regarding SRF technologies. The status of SRF linac hardware validation and their production, SRF infrastructure status and plan shall be addressed. The information that can be relevant for future large scale proton/ion SRF linacs will also be provided. |
||
![]() |
Slides MOAA01 [2.754 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOAA02 | Recent Progress with EU-XFEL | 14 |
|
||
The superconducting accelerator of the European XFEL consists of the injector part and the main linac. The injector includes one 1.3 GHz accelerator module and one 3.9 GHz third-harmonic module, while the main linac will consist of 100 accelerator modules, operating at an average design gradient of 23.6 MV/m. The fabrication and surface treatment by industry as well as RF acceptance tests of the required 808 superconducting 1.3 GHz cavities are close to an end by the time of SRF15. The accelerator module assembly, testing and installation in the tunnel is in full swing. First steps of commissioning have been made. The status and results of cavity and module RF tests at 1.3 GHz and 3.9 GHz are presented. | ||
![]() |
Slides MOAA02 [2.903 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOAA03 |
Progress on Chinese ADS project | |
|
||
An overview of C-ADS project progress since SRF2013 shall be presented. Operational experience with integrated hardware and beam tests and SRF infrastructure shall be reported. An overview of cavity and cryomodule progress can be presented keeping in mind that a detailed ADS cavity report will also be presented in a separate talk. | ||
![]() |
Slides MOAA03 [24.317 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOAA04 | Overview of Recent SRF Developments for ERLs | 24 |
|
||
Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. This talk reviews SRF technology for Energy Recovery Linacs (ERLs). In particular, recent developments and results reported at the ERL2015 Workshop are highlighted. The talk covers facilities under construction, commissioning or operation, such as cERL at KEK, BERLinPro at HZB and R&D ERL at BNL, as well as facilities in the development phase. Future perspectives will be discussed. |
||
![]() |
Slides MOAA04 [5.376 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOAA05 | Status of the RISP Superconducting Heavy Ion Accelerator | 31 |
|
||
Funding: This work was supported by the the Institute for Basic Science funded by the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea. Construction of the RISP heavy ion accelerator facility is in progress in Korea. The driver linac is a superconducting linac that can accelerate uranium to proton beams, delivering 400 kW beam power to various targets. Prototyping and test of the superconducting cavities and cryomodules are proceeding. Prototype superconducting cavities were fabricated through domestic vendors and their vertical tests were performed in collaboration with TRIUMF. Vertical tests showed good performance of the prototype cavities, which verified that there were no significant issues of the cavity design and fabrication. SRF Test Facility is under construction to be completed by early 2016. Progress report of the RAON accelerator systems is presented. |
||
![]() |
Slides MOAA05 [5.587 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOBA01 |
SRF Linac for LCLS-II: Design Approaches, R&D and First Test Results | |
|
||
This talk will describe the LCLS-II SRF linac stressing the challenges inherent in the technical specifications, the design approaches and the R&D program. Recent progress will be reported. | ||
![]() |
Slides MOBA01 [7.089 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUAA05 |
SRF Development for PIP-II: Status and Challenges | |
|
||
The recent progress on R&D in support of the construction of PIP-II is presented. Recent results and progress on low and medium beta cavity development, rf ancillary development, CM prototyping, resonance control, and the front end test facility PXIE are reported. | ||
![]() |
Slides TUAA05 [7.632 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB012 | LCLS-II High Power RF System Overview and Progress | 562 |
|
||
Funding: Work supported by DoE, Contract No. DE-AC02-76SF00515 A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more such SSAs. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A diagnostic line at 94 MeV, for tuning and characterizing the beam prior to acceleration through the rest of the linac, will contain an S-band transverse deflection cavity (TCAV) to time-resolve the energy spread of the beam. A 2.856 GHZ model 5045 pulsed klystron already existing at SLAC will be used to power the TCAV. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB013 | Fermilab Cryomodule Test Stand Design and Plans | 566 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. A facility dedicated to SRF cryomodule testing is under construction at Fermilab. The test stand has been designed to be flexible enough to cool down and power test full length TESLA-style 8-cavity cryomodules as well cryomodules for low-β acceleration. We describe the design considerations, status, and near future plans for utilization of the test stand. |
||
![]() |
Poster TUPB013 [5.146 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB015 | A New Cleanroom With Facilities for Cleaning and Assembly of Superconducting Cavities at Helmholtz-Institut Mainz | 575 |
|
||
The Helmholtz-Institut Mainz HIM will operate a clean room facility for the assembly and possible re-treatment of superconducting cavities. This is mandatory for several SRF accelerator projects, like the advanced demonstrator for a dedicated sc heavy ion cw-linac at HIM or other projects pursued by research facilities or universities close by. While the installation of the clean room is in progress, the procurement of the appliances is ongoing. The present equipment planned and the current status of the installation will be presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB016 | Progress on Superconducting Linac for the RAON Heavy Ion Accelerator | 578 |
|
||
The RISP (Rare Isotope Science Project) has been proposed as a multi-purpose accelerator facility for providing beams of exotic rare isotopes of various energies. It can deliver ions from proton to uranium. Proton and uranium ions are accelerated upto 600 MeV and 200 MeV/u respectively. The facility consists of three superconducting linacs of which superconducting cavities are independently phased. Requirement of the linac design is especially high for acceleration of multiple charge beams. In this paper, we present the RISP linac design, the prototyping of superconducting cavity and cryomodule. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB017 | 1.3 GHz SRF Technology R&D Progress of IHEP | 581 |
|
||
IHEP started the 1.3GHz SRF technology R&D in 2006 and recently enters the stage of integration and industrialization. After successfully making several single cell and 9-cell cavities of different shape and material, we designed and assembled a short cryomodule containing one large grain low loss shape 9-cell cavity with an input coupler and a tuner etc. This module will perform horizontal test in 2016 with the newly commissioned 1.3GHz 5MW klystron and the 2K cryogenic system. Beam test with a DC photocathode gun is also foreseen in the near future. We report here the problems, key findings and improvements in cavity dressing, clean room assembly, cryomodule assembly and the liquid nitrogen cool down test. A fine grain TESLA 9-cell cavity is also under fabrication in a company as the industrialization study. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB018 | Preparation of the 3.9 GHz System for the European XFEL Injector Commissioning | 584 |
|
||
The 3.9 GHz cryomodule and RF system for the XFEL Injector is being assembled and delivered to the underground building in summer 2015, for the injector commissioning in Fall 2015. This contribution outlines the status of the activity and reports the preparation stages of the technical commissioning of the system. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB020 | Recent Status New Superconducting CW Heavy Ion LINAC@GSI | 589 |
|
||
The demonstrator is a prototype of the first section of the proposed cw-LINAC@GSI, comprising a superconducting CH-cavity embedded by two superconducting solenoids. The sc CH-structure is the key component and offers a variety of research and development. The beam focusing solenoids provide maximum fields of 9.3 T at an overall length of 380 mm and a free beam aperture of 30 mm. The magnetic induction of the fringe is minimized to 50 mT at the inner NbTi-surface of the neighboring cavity. The fabrication of the key components is still in progress and is near to completion. After cold performance testing of the RF cavity, the helium jacket will be welded on. The cryostat is partly assembled and will be finished in the next weeks. The test environment is completely prepared. Advanced emittance measurement is foreseen to prepare for best matching of the heavy ion beam from the injector. Integration of the cryostat into the beam line, the first cool down of the module and commissioning of the RF elements will be performed as next steps towards a complete testing of the demonstrator. | ||
![]() |
Poster TUPB020 [8.595 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRBA05 |
Keynote Talk: Scientific Opportunities at LCLS-II - the High Repetition Rate Revolution | |
|
||
Keynote Talk: Scientific Opportunities at LCLS-II | ||
![]() |
Slides FRBA05 [3.877 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |