05 Beam Dynamics and Electromagnetic Fields
D01 Beam Optics - Lattices, Correction Schemes, Transport
Paper Title Page
TUOAB02 Design Study of the SuperKEKB Interaction Region Optics 950
 
  • H. Sugimoto, H. Koiso, A. Morita, Y. Ohnishi, K. Oide
    KEK, Ibaraki, Japan
 
  SuperKEKB is an upgrade project of KEKB e+e ring collider and is aimed to open up a new luminosity frontier. The target peak luminosity is 8x1035 cm-2 s-1. In order to achieve this target, a nano-beam scheme is adopted, in which colliding beams are squeezed to nano-scale sizes in the vertical direction at the interaction point (IP). The interaction region (IR) is an essential part of the SuperKEKB lattice design since the large chromaticity originated in the final focusing system (QCS) and strong lattice nonlinear forces make the particle motion unstable. An optics with detailed hardware specifications has been designed to optimize a performance of the beam dynamics. Design studies of IR taking into account a possible QCS imperfection are reported in this paper.  
slides icon Slides TUOAB02 [9.899 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOAB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO011 New Tools for K-modulation in the LHC 1024
 
  • M. Kuhn, B. Dehning, V. Kain, R. Tomás, G. Trad
    CERN, Geneva, Switzerland
 
  For many applications, the precise knowledge of the beta function at a given location is essential. Several measurement techniques for optics functions are used in the LHC to provide the most suitable method for a given scenario. A new tool to run k-modulation measurements and analysis is being developed with the aim to be fully automatic and online. It will take constraints of various systems such as tune measurement precision, powering limits of the LHC superconducting circuits and limits of their quench protection systems into account. It will also provide the possibility to sinusoidally modulate the currents of the investigated quadrupoles with a predefined frequency and amplitude to increase the measurement precision further. This paper will review the advantages and limitations of k-modulation measurements in the LHC with and without sinusoidal current modulation. The used algorithms and tools will be presented and estimates on the obtainable beta function measurement precision will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO022 Implementation of Luminosity Leveling by Betatron Function Adjustment at the LHC Interaction Points 1058
 
  • J. Wenninger, A.A. Gorzawski
    CERN, Geneva, Switzerland
 
  Growing expectations for integrated luminosity during upcoming LHC runs introduce new challenges for LHC beam operation in the scope of online luminosity control. Because some LHC experiments are limited in the maximum event rates, their luminosity is leveled to a constant value. Various techniques may be used for luminosity leveling, changing the betatron function at the interaction point is one of them. This paper explains the main operational requirements of a betatron function leveling scheme for the upcoming LHC run. Issues concerning the beam optics, orbits and collimator settings are discussed. The proposed architecture for control system integration will be discussed. A few operational scenarios with different beam configurations foreseen for the next LHC run will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO035 Vertical Emittance at the Quantum Limit 1096
 
  • R.T. Dowd, Y.E. Tan
    SLSA, Clayton, Australia
  • K.P. Wootton
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Further reduction of betatron coupling and vertical dispersion in the storage ring of the Australian Synchrotron Light Source has resulted in the achievement of a beam vertical emittance that is now dominated by the intrinsic quantum effects. This paper will detail the key elements in achieving a vertical emittance at the quantum limit and results achieved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO036 Start-to-end Optic of the FSF Multi-turn ERL Project 1099
SUSPSNE048   use link to see paper's listing under its alternate paper code  
 
  • T. Atkinson, A.V. Bondarenko, A.N. Matveenko, Y. Petenev
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association VH NG 636 and HRJRG-214
Advanced magnetic optic designs are required to meet the heavy demands of future light sources: diffraction limited emittance, femto-second pulses and low energy spread. This paper highlights the magnetic optic that is presently being investigated in the ERL-simulation group at HZB. The injector optic is based on subtle emittance compensation techniques of space charge dominated beams. The high energy arcs are designed to suppress emittance growth due to CSR through horizontal phase advance manipulation, ISR effects by keeping the radiation integrals small and reduce the degradation due to chromatic aberrations. Optimised Start-to-End beam dynamic simulations are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO037 Suppression Techniques of CSR Induced Emittance Growth in ERL Arcs 1102
 
  • A.V. Bondarenko, T. Atkinson, A.N. Matveenko
    HZB, Berlin, Germany
 
  The Energy Recovery Linac (ERL) conception is a promising way of creating diffraction limited synchrotron light source. The high ERL beam quality (low emittance, short bunch and low energy spread) gives an opportunity to generate high brightness photon beams. One of the main requirements for the optic in such machines is the suppression of emittance growth. An important reason for beam degradation is the impact of Coherent Synchrotron Radiation (CSR) in bending magnets. CSR induced emittance dilution and methods of preservation both with and without compression are discussed in this article.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO038 Beam Positioning Concept and Tolerance Considerations for BERLinPro 1105
 
  • B.C. Kuske, J. Rudolph
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association
BERLinPro is an ERL project at Helmholtz-Zentrum Berlin, with the goal to illuminate the challenges and promises of a high brightness 100 mA superconducting RF gun in combination with a 50 MeV return loop and energy recovery [1, 2]. The precision of the beam position in a single turn machine might be relaxed compared to the demands in storage rings. Still, a trajectory correction concept has to be developed and the influence of trajectory offsets on the goal parameters, its dependence on fluctuating injection parameters or effects related to the low energy of 6.5-50 MeV have to be investigated. This paper covers the initial trajectory correction studies and first tolerance scenarios of BERLinPro using the projected hardware concept.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO039 Optimizing Polarization with an Improved Integer Resonance Correction Scheme at ELSA 1108
 
  • J.F. Schmidt, O. Boldt, F. Frommberger, W. Hillert, J.-P. Thiry
    ELSA, Bonn, Germany
 
  Funding: DFG
The Electron Stretcher Facility ELSA of Bonn University provides a polarized electron beam of up to 3.2 GeV. In the stretcher ring various depolarizing resonances are crossed during the fast energy ramp of 6 GeV/s. The high polarization degree of up to 70% can only be conserved by taking several appropriate countermeasures. Concerning integer resonances, additional harmonic horizontal fields are applied by orbit correction magnets around the ring to compensate the resonance driving fields. The correction field has to be adjusted by empirical optimization of polarization. Recent developments enhance this optimization process, especially at high energies: A new magnet system allows for higher correction amplitudes and shorter rising times. Furthermore, a modified correction scheme was implemented. It takes into account the additional fields of the quadrupole magnets, arising from the orbit response of the correction magnets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO040 High Bandwidth Closed Orbit Control for a Fast Ramping Electron Accelerator 1111
 
  • J.-P. Thiry, A. Dieckmann, F. Frommberger, W. Hillert, J.F. Schmidt
    ELSA, Bonn, Germany
 
  ELSA is a fast ramping stretcher ring capable of acceleration and storage of polarized electrons with energies up to 3.2 GeV. To preserve the initial degree of polarization, the acceleration is performed by a fast energy ramp with a maximum ramping speed of 6 GeV/s. During acceleration especially the vertical orbit needs to be continuously corrected so that the vertical rms deviation does not exceed 50 μm at any time. In order to compensate the so called integer resonances, which occur at certain energies, the orbit correction system further needs to provide additional, empirically determined, harmonic field distributions. A successful application of these combined correction measures requires a considerably high bandwidth of up to some 100 Hz. In our contribution we will have a closer look at the performance and the acquired bandwidth of the correction system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO041 Status of Ion-optical Design of the Collector Ring 1114
 
  • O.E. Gorda, A. Dolinskyy, S.A. Litvinov
    GSI, Darmstadt, Germany
  • D.E. Berkaev, I. Koop, P.Yu. Shatunov, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
 
  The Collector Ring at FAIR will be used for fast cooling of hot antiproton or ion beams. The ring layout as well as the injection and extraction scheme have been modified during the latest design stage. In this paper, we report on the present status of the ion-optical properties of the machine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO042 Ion Optics of the HESR Storage Ring at FAIR for Operation with Heavy Ions 1117
 
  • O.A. Kovalenko, A. Dolinskyy, T. Katayama, Yu.A. Litvinov, T. Stöhlker
    GSI, Darmstadt, Germany
  • B. Lorentz, R. Maier, D. Prasuhn, H. Stockhorst
    FZJ, Jülich, Germany
 
  The High Energy Storage Ring (HESR) of the FAIR project is primarily designed for internal target experiments with stored and cooled antiprotons, which is the main objective of the PANDA collaboration. However, the HESR storage ring also appears to have remarkable properties to carry out physics experiments with heavy ions. In this paper a new ion optical design allowing the heavy ion operation mode of the HESR is presented. The main goal was to provide an optics which meets the requirements of the future experiments with heavy ion beams. Closed orbit correction, dynamic aperture as well as other characteristics of beam dynamics of the ion optical setup are under analysis in this study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO043 Status and Computer Simulations for the Front End of the Proton Injector for Fair 1120
 
  • C. Ullmann, R. Berezov, J. Fils, R. Hollinger, V. Ivanova, O.K. Kester, W. Vinzenz
    GSI, Darmstadt, Germany
  • N. Chauvin, O. Delferrière
    CEA/IRFU, Gif-sur-Yvette, France
 
  FAIR - the international facility for antiproton and ion research – located at GSI in Darmstadt, Germany is one of the largest research projects worldwide. It will provide an antiproton production rate of 7·1010 cooled pbars per hour, which is equivalent to a primary proton beam current of 2·1016 protons per hour. A high intensity proton linac (p-linac) will be built, with an operating rf-frequency of 325 MHz to accelerate a 70 mA proton beam up to 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with an ion beam pulse length of 36 μs[1]. Developed within a joint French-German collaboration - GSI/CEA-SACLAY/IAP – the compact proton linac will be injected by a microwave ion source and a low energy beam transport (LEBT). The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the RFQ (Radio Frequency Quadrupole) within an emittance of 0.3π mm mrad (rms). To check on these parameters computer simulations with TraceWin, IGUN and IBSIMU of the ion extraction and LEBT (Low Energy Beam Transport) are performed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO044 Bunch Compression of the Low-energy ELBE Electron Beam for Super-radiant THz Sources 1123
 
  • U. Lehnert, P. Michel, R. Schurig
    HZDR, Dresden, Germany
  • A.A. Aksoy
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • P.E. Evtushenko
    JLab, Newport News, Virginia, USA
  • J.M. Krämer
    Danfysik A/S, Taastrup, Denmark
 
  At the ELBE radiation source two super-radiant THz sources, a broad-band trasnsition/diffraction radiation source and a planar undulator narrow-band sourc are under commissioning. At present the facility is driven from the ELBE linac with a CW electron beam of 100kHz repetition rate and up to 100pC of bunch charge. With the upgraded SRF electron gun bunch charges up to 1nC will become available. For the beam energies in the 20-30 MeV range buch compression into the sub-200 fs range becomes a major challenge. We present beam dynamics calculation of the attempted bunch compression scheme as well as first measurements obtained during the commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO045 Simulation Studies on Beam Injection into a Figure-8 Type Storage Ring 1126
 
  • M. Droba, A. Ates, O. Meusel, H. Niebuhr, D. Noll, U. Ratzinger, J.F. Wagner
    IAP, Frankfurt am Main, Germany
 
  The proposed figure-8 storage ring at Frankfurt University [1, 2] is based on longitudinal guiding magnetic fields and will have special features with respect to the beam dynamics. A crucial part of the ring is the injection section, where the low energy beams have to cross an area of steeply rising field – up to B = 6 T into the main ring field. An optimized magnetic channel is designed to bring the injected beam close enough to the magnetic ring flux. An ExB kicker is needed to move the injected beam from the injection channel to the main magnetic field flux allowing multi turn injection. Simulation studies concentrate on this part and will be presented, results will be discussed. A comparison with simulations for prepared scaled down experiments with existing room temperature toroids will be done.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO046 Beamlines with Two Deflecting Cavities for Transverse-to-Longitudinal Phase Space Exchange 1129
 
  • V. Balandin, W. Decking, N. Golubeva
    DESY, Hamburg, Germany
 
  Optical systems for transverse-to-longitudinal emittance exchange involving single dipole-mode cavity were in great details studied during the last decade theoretically and experimentally. In this paper we discuss the question, if there are any advantages in usage of beamlines utilizing two deflecting cavities instead of one. The general analysis is presented and specific beamline designs are given as examples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO047 Betatron Oscillations in Planar Dipole Field 1132
 
  • V. Balandin, W. Decking, N. Golubeva
    DESY, Hamburg, Germany
 
  In this paper, in preparation to the European XFEL commissioning, we consider the procedure of calculation of focusing properties of chicane-type bunch compressors and planar undulators using 2D magnetic field model (approximation of infinitely wide poles).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO048 Dynamics of Twiss Parameters from the Geometrical Viewpoint 1135
 
  • V. Balandin, N. Golubeva
    DESY, Hamburg, Germany
 
  We show that with an appropriate parametrization the linear transport of the Twiss parameters can be viewed as a bilinear (or Moebius) map of the upper complex half-plane (which is the hyperbolic plane) into itself. Using then elementary techniques of hyperbolic geometry we classify transformations of the Twiss parameters into elliptic, hyperbolic and parabolic types and, for each type, present its typical phase space portraits.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO049 Layout and Optics of the Dump Line at the European XFEL 1138
 
  • N. Golubeva, V. Balandin, W. Decking
    DESY, Hamburg, Germany
 
  The purpose of the optical system, which we call the dump line, is not simply the transport of the beam to the beam dump. It is an essential part of the beam switchyard which provides the possibility to distribute electron bunches of one beam pulse to different FEL beam lines, allowing a flexible selection of the bunch pattern at each FEL experiment. In this paper we describe the final layout of this optical system as it is now under construction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO050 Measurements of the Optical Functions at FLASH 1141
 
  • J. Zemella, T. Hellert, M. Scholz, M. Vogt
    DESY, Hamburg, Germany
 
  In 2013 the superconducting soft x-ray Free Electron Laser FLASH at DESY (Hamburg, Germany) the extraction section needed to connect the 2nd beam line FLASH2 was installed. In order to allow simultaneous operation of the two beam lines (FLASH1/2), the optical functions in the extraction area needed to be modified. During the recommissioning of FLASH we have optimized, measured and corrected the optical functions in the machine. We report on the the results and the methods.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO051 Emittance Increase and Matching along the Tomography Module at PITZ 1144
SUSPSNE050   use link to see paper's listing under its alternate paper code  
 
  • G. Kourkafas, P. Boonpornprasert, J.D. Good, M. Groß, I.I. Isaev, D.K. Kalantaryan, M. Khojoyan, M. Krasilnikov, D. Malyutin, B. Marchetti, D. Melkumyan, M. Otevřel, T. Rublack, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • G. Pathak
    Uni HH, Hamburg, Germany
 
  The Photo Injector Test facility at DESY, Zeuthen site (PITZ), focuses on testing, characterizing and optimizing high brightness electron sources for free electron lasers. PITZ is equipped with a number of transverse emittance measurement stations, among which is the Phase Space Tomography (PST) module. A PST measurement requires a specific transport along the tomography lattice, which ideally rotates the beam in the normalized transverse phase space by 180 degrees in equidistant steps. A preceding matching section is used to provide an injection scheme that delivers the necessary beam parameters for the design transport along the tomography lattice. The high charge density and moderate energy of the electron bunch at PITZ contribute to significant space-charge forces which lead to emittance growth and consequent mismatches of the design parameters. This article presents and evaluates measurements of the emittance increase along the matching section of a 1 nC beam at 22 MeV/c under different focusing schemes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO052 Study a ‘Sum’ Linear Coupling Resonance for J-PARC Main Ring: Observations and Simulations 1147
 
  • A.Y. Molodozhentsev, S. Igarashi
    KEK, Ibaraki, Japan
  • Y. Sato, J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  J-PARC Main Ring should deliver a high-power proton beam to neutrino experiments with limited particle losses. To meet this requirement low-order machine resonances have to be compensated. The linear coupling resonance Qx+Qy=43 has been identified as the potential source for significant particle losses at the collimator. The resonance compensation scheme has been studied experimentally by using a low intensity beam. To understand this process the simulations have been performed by using the PTC-ORBIT code. The Main Ring model has been developed to reproduce the machine operation including the initial stage of the acceleration. The 6D beam model has been defined to represent the ‘pencil’ beam used for this study. In frame of this report the single and multi particle dynamics will be discussed to understand the results of measurements, performed during RUN44 (November 2012). The results of the long-term tracking for this case will be presented. The obtained results can be used to benchmark the computer modeling the ‘sum’ linear coupling resonance with the experimental results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO053 Design and Optimization of Racetrack Microtron for Laser Compton Scattered Gamma-ray Sources 1150
 
  • R. Hajima
    JAEA/ERL, Ibaraki, Japan
  • M. Ferdows
    JAEA, Ibaraki-ken, Japan
 
  Funding: This work is supported by Funds for Integrated Promotion of Social System Reform and Research and Development.
Racetrack microtron (RTM) is a compact accelerator to obtain electron beams with an energy above 100 MeV. Conventional RTM's have been designed to accelerate a train of electron bunch from a thermionic electron gun, where the bunch charge is typically 10 pC. In the industrial application of laser Compton scattered gamma-ray sources, RTM with 200-300 MeV electron energy will be a suitable device to produce 2-3 MeV gamma-ray beams. Single electron bunch from a photocathode RF gun is accelerated and a high-charge small-emittance beam is preferable in such RTM. In this paper, we adopt a simulation code, GPT, for design and optimization of RTM in view of high-charge and small-emittance beam generation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO054 Preliminary Design of a LEBT for HIAF Linac at IMP 1153
SUSPSNE051   use link to see paper's listing under its alternate paper code  
 
  • Y. Yang, Y. He, L.T. Sun, X.Z. Zhang, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
 
  Funding: National Basic Research Program of China (contract No. 2014CB845500) and the 100 Talents Program of the CAS ( No.  Y214160BR0) and China Nature Science Foundation (contract No. 11221064).
Heavy-Ion Advanced Research Facility (HIAF) is a new project proposed at Institute of Modern Physics (IMP) in China. HIAF project accelerator is composed of intense ion beam sources, injector superconducting LINAC, acceleration and accumulation storage ring, a collection ring and a collider ring. To achieve the ultimate project goal, HIAF accelerator requires the ion source to provide very high intensity of heavy ion beams, such as 1.7 emA 238U34+ with a repetition rate of 5 Hz and pulse length of 0.5 ms. No state-of-the-art ion source can meet the needs. As a baseline of the project, a high performance superconducting ECR ion source, which is designed to be operational at the microwave frequency of 40-60 GHz will be adopted to produce the pulsed beam of interest for the HIAF accelerator. To transport and match the beams from ECR to the downstream RFQ, a low energy beam transport (LEBT) is needed. This paper presents a preliminary design of the LEBT and the beam dynamics in the LEBT.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO055 Design Status of the RISP Test Facility LEBT 1156
 
  • R.M. Bodenstein, D. Jeon
    IBS, Daejeon, Republic of Korea
  • J. Bahng
    Kyungpook National University, Daegu, Republic of Korea
 
  Funding: Supported by the Rare Isotope Science Project of Institute for Basic Science funded by Ministry of Science, ICT and Future Planning and National Research Foundation of Korea Project No. 2011-0032011
Raon, the rare isotope accelerator of the the Rare Isotope Science Project (RISP) in Daejeon, South Korea, is being designed to accelerate multiple-charge-state beams simultaneously. Using an Electron Cyclotron Resonance (ECR) Ion Source to produce the ions, Raon will transport the beam through two 90-degree bending magnets and a Low Energy Beam Transport (LEBT) system to a Radio Frequency Quadrupole (RFQ). In order to test the components of the injector and LEBT system, a test facility is under development. A new LEBT, based upon the LEBT of the main driver linac, is being designed to fit within the test facility’s restrictive space requirements. This work will briefly review the main driver linac LEBT design, and then discuss the current status of the test facility LEBT design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO056 Merit Functions for the Linac Optics Design for Colliders and Light Sources 1159
 
  • S. Di Mitri, M. Cornacchia
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • H.-S. Kang
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Optics matching and transverse emittance preservation are key goals for a successful operation of modern high brightness electron linacs. The capability of controlling them in a real machine critically relies on a properly designed magnetic lattice. Conscious of this fact, we introduce an ensemble of optical functions* that permit to solve the often neglected conflict between strong focusing, typically implemented to counteract coherent synchrotron radiation and transverse wakefield instability, and distortion of the transverse phase space induced by chromatic aberrations and focusing errors. A numerical evaluation of the merit functions is applied to existing and planned linac-based free electron lasers.
*S. Di Mitri and M. Cornacchia, Nucl. Instr. Meth. Phys. Research A 735, 60–65 (2014).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO057 Solenoid Siberian Snake Without Compensation of Betatron Oscillation Coupling in Nuclotron@JINR 1162
 
  • Y. Filatov, V.A. Mikhaylov
    JINR, Dubna, Russia
  • A.V. Butenko, A.D. Kovalenko
    JINR/VBLHEP, Moscow, Russia
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  The influence of solenoids on spin is very efficient, but beam focusing is determined mainly by structural quadru-poles. The condition of stable orbital motion of particles does not require compensation of the betatron oscillation coupling. To reduce the influence of the Snake on orbital motion it is desirable to exclude compensating quads completely. The design of solenoid Siberian snake for the Nuclotron lattice is presented. The orbital functions of the lattice were calculated and the results are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO058 Lattice Correction Modeling for Fermilab IOTA Ring 1165
 
  • A.L. Romanov
    BINP SB RAS, Novosibirsk, Russia
  • G.T. Kafka, S. Nagaitsev, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  The construction of the Integrable Optics Test Accelerator (IOTA) is underway at Fermilab. Among the main goals of the facility are the proof-of-principle experiments on nonlinear integrable optics and optical stochastic cooling. Both require outstanding quality of the linear lattice and closed orbit. Software was developed to thoroughly test the proposed lattice configurations for error correction performance. The presented analysis is based on a statistical approach on a number of error seeds, such as various alignment, calibration and field errors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO059 Beam Energy Measurements using Resonant Spin Depolarization at ALBA 1168
 
  • Z. Martí, U. Iriso, F. Pérez
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  Energy measurements with precision down to 10-5 are inferred from the lifetime evolution when the beam is depolarized using AC kicks with the Transverse Fast Feedback system. Lifetime measurements are carried out using the DCCT, the BPM sum signals, pin-diode BLMs, and a scintillator based Beam Loss Detector. Results obtained with this instrumentation are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO060 First Turn-by-turn Measurements for Beam Dynamics Studies at ALBA 1171
 
  • Z. Martí, G. Benedetti, M. Carlà, A. Olmos
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  This paper summarizes the tasks carried out to develop a turn-by-turn (TBT) measurement system at ALBA. These tasks mainly include testing the MAF firmware for the libera BPMs and implementing the necessary analytical tools to infer the beam dynamics parameters. TBT measurements using an injection kicker are presented. Linear and non-linear beam dynamics results are compared with LOCO. Results are still preliminary since a good agreement with the linear model has not been achieved yet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO061 Benchmarking Beam Envelope Models for the European Spallation Source 1174
 
  • I. List
    Cosylab, Ljubljana, Slovenia
  • E. Laface
    ESS, Lund, Sweden
 
  TraceWin is used at the European Spallation Source (ESS) as the design tool, while fast and accurate on-line models will be needed during the operations. Three models are compared: the ESS Linac Simulator (ELS), TraceWin and the OpenXAL. In all of the benchmarked models, dynamics of each beam-line element is, to the first order, represented by a transfer matrix. Differences in the matrices occur, since different reference frames are used and as well different assumptions about the energy of the particles are made. General transformations of the reference frames will be presented. Using those, the comparison of transfer maps among TraceWin and OpenXAL are given. When the differences between TraceWin and OpenXAL were unclear, the benchmark versus other code, like MAD-X and Dynac was done. The best implementations were combined into a new on-line model implementation Java ELS (or JELS) and at last the comparison of the latter with TraceWin is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO062 Improvements in the Optics Measurement Resolution for the LHC 1177
 
  • A. Langner, R. Tomás
    CERN, Geneva, Switzerland
 
  Optics measurement algorithms which are based on the measurement of beam position monitor (BPM) turn-by-turn data are currently being improved in preparation for the commissioning of the LHC at higher energy. The turn-by-turn data of one BPM may be used more than once, but the implied correlations were not considered in the final error bar. In this paper the error propagation including correlations is studied for the statistical part of the uncertainty. The confidence level of the measurement is investigated analytically and with simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO063 Upgrade of Slicing and Tracking in MAD-X 1180
 
  • H. Burkhardt, L. Deniau, A. Latina
    CERN, Geneva, Switzerland
 
  We describe the extension of the functionality of the slicing module and its applications in MAD-X. We can now select thick or thin slicing for individual quadrupoles or groups of quadrupoles and implemented tracking of thick quadrupoles and dipoles in MAD-X. Complex dipole magnets with fringe fields can now automatically be translated to simple bends with extra dipedges.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO067 Beam Transport Optimization Studies of the PSI MW-Class Proton Channel 1189
 
  • D. Reggiani, D.C. Kiselev, T. Reiss, R. Sobbia, V. Talanov, M. Wohlmuther
    PSI, Villigen PSI, Switzerland
 
  The proton channel of the PSI high intensity proton accelerator (HIPA) transports the beam from the extraction point of the ring cyclotron through two meson production graphite targets up to the SINQ spallation source. After many years of continuous improvement, the HIPA accelerator complex has now reached the remarkable beam power of 1.4 MW. The next power upgrade is foreseen for the near future. In order to achieve this further step, an optimization of the beam optics in the proton channel is required with the goal of keeping the beam losses at a reasonable extent and, at the same time improve the beam distribution on the SINQ target.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO068 Commisioning of the 2.4T Multipole Wiggler and the 6.5T Superconducting Wavelength Shifter at the SIAM Photon Source 1192
 
  • P. Sudmuang, S. Klinkhieo, P. Klysubun, S. Kongtawong, S. Krainara, N. Suradet, A. Tong-on
    SLRI, Nakhon Ratchasima, Thailand
 
  A 2.4 T hybrid multipole wiggler (MPW) and a 6.5 T superconducting wavelength shifter (SWLS) have been successfully installed and commissioned at Siam Photon Source (SPS). The influence of the two insertion devices on the electron beam dynamic at different operating points have been studied in order to determine the optimal lattice configuration for operation. In this paper, the compensation of the linear optics will be presented, and the commissioning scheme will also be described. In addition, the investigation of the difference between the model and the actual observed machine parameters will be reported in details.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO069 First Studies of Two-beam Tuning in the CLIC BDS 1195
 
  • J. Snuverink
    JAI, Egham, Surrey, United Kingdom
  • A. Latina, R. Tomás
    CERN, Geneva, Switzerland
 
  Beam tuning in the beam delivery system (BDS) is one of the major challenges for the future linear colliders. Up to now single beam tuning has been performed, both in simulations and experiments at the Accelerator Test Facility (ATF). However, in future linear colliders, due to fast detuning of the final focus optics both beamlines will need to be tuned simultaneously. In this paper a first two-beam tuning study for the Compact Linear Collider (CLIC) BDS is presented applying the usual toolbox of beam-based alignment (BBA) and sextupole knobs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO070 LHeC IR Optics Design Integrated into the HL-LHC Lattice 1198
SUSPSNE049   use link to see paper's listing under its alternate paper code  
 
  • E. Cruz Alaniz, M. Korostelev, D. Newton
    The University of Liverpool, Liverpool, United Kingdom
  • E. Cruz Alaniz, M. Korostelev, D. Newton
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: OPAC fellowship funded by European Union under contract PITN-GA-2011-289485
The LHeC is a proposed upgrade to the LHC to provide electron-proton collisions and explore the new regime of energy and intensity for lepton-nucleon scattering. The work presented here investigates optics and layout solutions allowing simultaneous nucleon-nucleon and lepton-nucleon collisions at separate interaction points compatible with the proposed HL-LHC lattice. A first lattice design has been proposed that collides proton beam 2 with the electron beam. The nominal design calls for a β* (beta function in the interaction point ) of 10 cm using an extended version of the Achromatic Telescopic Squeezing (ATS) scheme, and a L* (distance to the inner triplet) of 10 m. Modifying these two parameters, β* and L*, can provide benefits to the current design since the values of these parameters have direct effects on the luminosity, the natural chromaticity and the synchrotron radiation of the electron beam. This work aims to explore the range over which these parameters can be varied in order to achieve the desired goal.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO071 Optimization of Low Energy Electrostatic Beam Lines 1202
 
  • O. Karamyshev, D. Newton, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O. Karamyshev, D. Newton, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Work supported by the STFC Cockcroft Institute Core Grant No. ST/G008248/1
Electrostatic elements are frequently used for transporting low energy charged particles, as they are easy to build and operate. However, beam motion is strongly affected by effects from fringe fields, positioning and manufacturing errors of individual ion optical elements. It is important to carry out detailed studies into these effects in order to optimize beam transport. In this paper results from numerical studies with a purpose-written code are presented and compared against analytical estimates. It is shown how the results can be used to optimize the mechanical layout of the electrostatic ion optics elements, including quadrupoles and spherical deflectors. Finally, the results from beam tracking through a multi-element beam line are presented on the basis of both, matrix multiplication and numerical particle tracking.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO072 Lattice and Component Design for the Front End Test Stand MEBT at RAL 1205
 
  • M. Aslaninejad, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • M.A. Clarke-Gayther, A.P. Letchford, D.C. Plostinar
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) linear accelerator at Rutherford Appleton laboratory (RAL) will accelerate a 60 mA, 2 ms, 50 pps H beam to 3MeV. The aim of FETS is to demonstrate perfect chopping using a novel 2 stage (fast / slow) chopper scheme. The beam chopper and associated beam dumps are located in the MEBT. Achieving a low emittance-growth under the influence of strong, non-linear space-charge forces in a lattice which has to accommodate the long chopping elements is challenging. The baseline FETS MEBT design is 4.3 m long and contains 7 quadrupoles, 3 rebunching cavities, a fast and slow chopper deflector and two beam dumps. In particle dynamics simulations using a distribution from an RFQ simulation as input, beam loss for the un-chopped beam is below 1% while the chopping efficiency is >99 % in both choppers. The final MEBT lattice chosen for FETS will be presented together with particle tracking results and design details of the beam line components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO073 RFFAG Decay Ring for nuSTORM 1208
 
  • J.-B. Lagrange, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Appleby, J.M. Garland, H.L. Owen, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  The nuSTORM facility aims to deliver neutrino beams produced from the decay of muons stored in a racetrack ring. Design of racetrack FFAG (Fixed Field Alternating Gradient) decay ring for nuSTORM project is presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO074 Emittance Growth due to Multiple Coulomb Scattering in a Linear Collider based on Plasma Wakefield Acceleration 1211
 
  • Ö. Mete, K. Hanahoe, G.X. Xia
    UMAN, Manchester, United Kingdom
  • O. Karamyshev, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M. Labiche
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Wing
    UCL, London, United Kingdom
 
  Alternative acceleration technologies are currently under development for cost-effective, robust, compact and efficient solutions. One such technology is plasma wakefield accel- eration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance growth of the witness beam through elastic scattering from gaseous media is derived. The model is compared with the numerical studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO075 Initial Analysis of the 4D Transfer Map in the Emma Non-Scaling Fixed Field Alternating Gradient Accelerator 1214
 
  • C.S. Edmonds, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • B.D. Muratori, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: STFC
The EMMA non-scaling Fixed Field Alternating Gradient accelerator (ns FFAG) is a ring consisting of 42 quadrupole pairs. The dipole fields which guide particles around the ring are arrived at through offsetting the quadrupoles from a reference axis. In the ideal case, first order 4D transfer maps will describe the turn by turn progression of a particle bunch in transverse phase space. This contribution sees the use of experimental data to calculate the 4D transfer map for EMMA at several different momenta, and a comparison made with maps produced through simulation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO076 Initial Experimental Analysis into the eRHIC Polarized Electron Beam Transport System 1217
 
  • C. Yeckel, E. Dobrin, P. Holen, R.C. Miller, M. Stangenes, K.A. Thompson, L.W. Thompson
    Stangenes Industries, Palo Alto, California, USA
  • I. Ben-Zvi, R.F. Lambiase, J. Skaritka, E. Wang
    BNL, Upton, Long Island, New York, USA
 
  Stangenes Industries is working closely with Brookhaven National Lab in the United States to develop the eRHIC future ion collider. The collider requires a polarized electron source with high average current, short bunch length and small emittance. An array of photocathodes with their beams funneled into a common trajectory is utilized to achieve the required beam current and cathode lifetime. Stangenes Industries is charged with delivering the prototype injector for preliminary beam studies that will lead to full implementation by 2020. This study focuses on the development of the of beam transport system extending from cathode to beam dump. A majority of the complexity involves the so called "combiner magnet" that acts as a high frequency-rotating dipole to bend each beam into the final common trajectory. Preliminary experiments into the feasibility of such a system are analyzed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO077 AGS Snake Stories 1220
 
  • F. Méot, Y. Dutheil, R.C. Gupta, H. Huang, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
This contribution re-visits fields, particle motion, and spin precession in the AGS helical polarization snakes. The work was undertaken in preparation of orbit and spin modeling for future polarized proton and helion runs at RHIC. The investigations include re-computation of 3-D OPERA field maps of the helical snakes and particle and spin tracking. There is a series of sub-products of this study, amongst others, the appropriate settings of the AGS cold snake when changing its strength, cold snake settings for polarized helion programs, non-linear coupling in the AGS, the transport of the stable polarization axis from the AGS to RHIC injection kickers, and in addition, a series of high accuracy 3-D field maps have been produced, in view of long-term tracking in the AGS for beam and polarization transmission studies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME057 Optimization of Accelerators and Light Sources within oPAC 1499
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289485.
The optimization of particle accelerators and light sources by combining studies into beam physics, instrumentation, numerical simulations and accelerator control systems is the aim of the EU-funded oPAC project. With a budget of more than 6 M€, oPAC is one of the largest training networks ever funded by the EU and currently trains more than 20 Marie Curie Fellows. This paper presents selected research highlights, including optimization studies into the CERN Proton Synchrotron (PS), measurement and correction of linear and nonlinear optics distortions in the ALBA synchrotron (Spain), perturbation measurements of a cavity Schottky noise detector at GSI (Germany) and R&D into device control data base tool at COSYLAB (Slovenia). Moreover, a summary of past and future oPAC events is also given.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI026 MAX IV Emittance Reduction and Brightness Improvement 1615
 
  • S.C. Leemann, M. Eriksson
    MAX-lab, Lund, Sweden
 
  With MAX IV construction well underway and storage ring commissioning expected to commence in July 2015, first studies have been launched to improve the optics of the MAX IV 3 GeV storage ring with the goal of further reducing the emittance from the baseline design (328 pm rad) towards 150 pm rad while improving the matching of the electron beam to insertion devices to further improve the resulting photon brightness. We report on progress in the development of this new optics taking into account the strong impact from intrabeam scattering and insertion devices on the resulting equilibrium emittance. We present initial results and sketch a path towards a first MAX IV upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI040 New BBA Algorithm for Electron Beam Orbit Steering in Linear Accelerators 1650
 
  • A. Sargsyan, V. Sahakyan, G.S. Zanyan
    CANDLE SRI, Yerevan, Armenia
  • W. Decking
    DESY, Hamburg, Germany
 
  In linear accelerators or transfer lines beam-based alignment (BBA) techniques are important tools for beam orbit steering. In this paper BBA correction algorithm based on difference orbit multiple measurements is proposed. Numerical simulation results for European XFEL SASE1 and FLASH undulator section are presented, according to which the orbit alignment can be achieved within accuracy of about 2 microns and 5 microns respectively. The influence of quadrupole gradient errors is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI083 A Fast Optics Correction for the Diamond Storage Ring 1763
 
  • I.P.S. Martin, M.G. Abbott, R. Bartolini, M.J. Furseman, G. Rehm
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Since March 2013, the Diamond storage ring has been operated with a target vertical emittance of 8 pm.rad. This condition is achieved by first applying a LOCO* optics correction with IDs set to their typical gaps, then offsetting the skew quadrupole magnets in order to increase the vertical emittance again to the desired value. Whilst a feedback application** is able to stabilise the vertical emittance during ID gap and phase changes in the short to medium term, regular applications of LOCO are still required to maintain good coupling control in the longer term. In this paper we describe measures taken to speed up the optics correction procedure, including a fast orbit response matrix measurement, a reduction of the number of magnets used to measure the data, and a distribution of the LOCO calculations to run in parallel.
* J. Safranek, Nucl. Inst. Meth. A, 338, (1997)
** I.P.S. Martin, et al., IPAC 2013, MOPEA071, www. JACoW.org
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA02 Status of the Emittance Transfer Experiment Emtex 2798
 
  • M.T. Maier, L. Groening, C. Mühle, I. Pschorn, P. Rottländer, C. Will, C. Xiao
    GSI, Darmstadt, Germany
  • M. Chung
    Fermilab, Batavia, Illinois, USA
 
  In order to improve the injection efficiency of the round UNILAC heavy ion beam into the asymmetric acceptance of the SIS18 it would be of great advantage to decrease the horizontal emittance by a so called emittance transfer to the vertical plane. In this contribution the present status of the emittance transfer experiment EMTEX at GSI will be reported. A short introduction about the theoretical background of the technique will be given, while the main part is dedicated to the practical solutions setting up a test beam line at GSI. Finally, the results of a first commissioning beam time will be presented. The scheduled beam time to apply the emittance transfer technique foreseen in spring 2014 had to be shifted to calendar week 26 in 2014, just after this conference, as some components have not been delivered in time by the contractor. The results and comparison to the theoretical predictions you may find in later publications.  
slides icon Slides THOBA02 [1.928 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOBA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA03 Beam Transport System from a Laser Wakefield Accelerator to a Transverse Gradient Undulator 2803
 
  • C. Widmann, V. Afonso Rodríguez, A. Bernhard, N. Braun, A.-S. Müller, A.I. Papash, R. Rossmanith, W. Werner
    KIT, Karlsruhe, Germany
  • M. Kaluza, M. Reuter
    HIJ, Jena, Germany
  • M. Kaluza, M. Nicolai, A. Sävert
    IOQ, Jena, Germany
 
  Funding: This work is funded by the German Federal Ministry for Education and Research under contract no. 05K10VK2.
The transport and matching of electron beams generated by a laser wakefield accelerator (LWFA) is a major challenge due to their large energy spread and divergence. Strong focussing magnets and a chromatic correction are required. This contribution discusses the layout of the beam transport optics for a diagnostic beamline at the LWFA in Jena, Germany. The aim of this optics is to match the betatron functions and the dispersion to the field of a transverse gradient undulator (TGU) such that monochromatic undulator radiation is generated despite the large energy spread.
 
slides icon Slides THOBA03 [2.891 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOBA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)