

Beam Transport System from a Laser Wakefield Accelerator to a Transverse Gradient Undulator

Christina Widmann - 19 June 2014

Laboratory for Applications of Synchrotron Radiation / ANKA

Verónica Afonso Rodríguez, Nils Braun, Alexander Papash Robert Rossmanith, Walter Werner, Axel Bernhard, Anke-Susanne Müller Karlsruhe Institute of Technology (KIT), Germany

Maria Nicolai, Maria Reuter, Alexander Sävert, Malte C. Kaluza Friedrich Schiller University Jena and Helmholtz Institute Jena, Germany

SPONSORED BY THE

Outline

Basic Experimental Concept

Layout of the Beam Transport System

Target Parameters at the Undulator Initial Parameters for the Transport System

Tracking Studies

Summary and Outlook

Properties of Laser Wakefield Accelerators

Fig.: Electron acceleration in a plasma wave.

A. Pukhov et al., Appl. Phys. B 74, 2002

- acceleration gradients \sim 100 GV/m
- short acceleration length < 1 cm</p>
- electron energies up to 1 GeV
- bunch length \sim 5 fs

but

energy spread of some percent

Concept of Transverse Gradient Undulators

Idea: Matching of the electron energy to the magnetic field amplitude

$$\gamma o \gamma(\mathbf{x}) \ B_{\mathbf{y}_0} o B_{\mathbf{y}_0}(\mathbf{x})$$

undulator equation:

$$\lambda = \frac{\lambda_u}{2\gamma(x)^2} \left(1 + \frac{K(x)^2}{2} \right)$$

with
$$K = \frac{e}{2\pi m_0 c} \lambda_u B_{y_0}(x)$$

Fig.: Working principle of the TGU.

Compensation of the energy spread of the LWFA.

T.I. Smith et al., J. Appl. Phys 50, no. 3, 1979 and G. Fuchert et al., NIMA Vol.672, 2012

Concept of Transverse Gradient Undulators

Idea: Matching of the electron energy to the magnetic field amplitude

$$egin{aligned} & \gamma o \gamma(m{x}) \ & m{B}_{m{y}_0} o m{B}_{m{y}_0}(m{x}) \end{aligned}$$

undulator equation:

$$\lambda = \frac{\lambda_u}{2\gamma(x)^2} \left(1 + \frac{K(x)^2}{2} \right)$$

with
$$K = \frac{e}{2\pi m_0 c} \lambda_u B_{y_0}(x)$$

Fig.: Spectra of a planar undulator vs. TGU.

Compensation of the energy spread of the LWFA.

T.I. Smith et al., J. Appl. Phys 50, no. 3, 1979 and G. Fuchert et al., NIMA Vol.672, 2012

Basic Experimental Concept

Aim: No increase of the undulator radiation bandwidth despite the energy spread of the LWFA.

Fig.: Sketch of the setup planned at the LWFA in Jena.

Design assumptions

- central electron energy $E_0 = 120 \text{ MeV}$
- energy acceptance of the undulator $\Delta E/E = \pm 10\%$

¹ V. Afonso Rodriguez et al., IEEE, vol. 23, no. 3, 2012 and WEPRO036, these proceedings

Target Parameters at the Undulator

Considering monoenergetic beamlets

 $E_0 + \Delta E = E_0 + X' = E_0 + \Delta E$

for each beamlet

- ⟨x⟩_b average position of beamlet
 → wavelength of the radiation
- $\langle x' \rangle_b < 0.1 \text{ mrad}$ $\rightarrow \text{ parallel beamlets}$

⇒ linear target parameters: D = -0.02 m and D' = 0

• small beam size in x \rightarrow bandwidth of the spectrum

Target Parameters at the Undulator

Considering monoenergetic beamlets

 $E_0 + \Delta E = E_0 + X' = E_0 + \Delta E$

for each beamlet

- ⟨x⟩_b average position of beamlet
 → wavelength of the radiation
- $\langle x' \rangle_b < 0.1 \text{ mrad}$ $\rightarrow \text{ parallel beamlets}$
- ⇒ linear target parameters: D = -0.02 m and D' = 0
 - small beam size in *x*
 - ightarrow bandwidth of the spectrum

Target Parameters at the Undulator

Considering monoenergetic beamlets $E_0 + \Delta E = E_0 + X' = E_0 + \Delta E$

for each beamlet

- ⟨x⟩_b average position of beamlet
 → wavelength of the radiation
- $\langle x' \rangle_b < 0.1 \text{ mrad}$ $\rightarrow \text{ parallel beamlets}$
- ⇒ linear target parameters: D = -0.02 m and D' = 0
 - small beam size in x → bandwidth of the spectrum

Optimum beta functions

Fig.: Beta functions along the undulator.

Initial Parameters for the Transport System

measured at

the LWFA in Jena:

bunch size σ_{x_p} inside the plasma

- $\sigma_{x_p} = 0.7 \,\mu \text{m}$ measured via betatron radiation
- $\sigma_{x'_0} = 2.5 \, \text{mrad}$

M. Schnell et al., Phys. Rev. Lett. 108, 2012

For this study:

initial parameters

the ALPHA-X beamline (UK):

emittance measurements using the pepperpot method

average geometrical emittance $\varepsilon = 8.8 \text{ nm rad}$

•
$$\sigma_{x_0'} = 2-4 \, \text{mrad}$$

• estimated source size $\sigma_{x_0} = 3\mu m$

E. Brunetti et al., Phys. Rev. Lett. 105, 2010

- with beam waist at the exit of the LWFA
- same parameters in both planes

Initial Parameters for the Transport System

measured at

the LWFA in Jena:

bunch size σ_{x_p} inside the plasma

- $\sigma_{x_p} = 0.7 \,\mu \text{m}$ measured via betatron radiation
- $\sigma_{x'_0} = 2.5 \, \text{mrad}$

M. Schnell et al., Phys. Rev. Lett. 108, 2012

For this study:

initial parameters

$\sigma_{x_0,y_0}\\\sigma_{x_0',y_0'}$	$4 \mu \mathrm{m}$ 2.5 mrad
ε_{x_0,y_0}	10 nm rad

the ALPHA-X beamline (UK):

emittance measurements using the pepperpot method

average geometrical emittance $\varepsilon = 8.8 \text{ nm rad}$

•
$$\sigma_{x'_0} = 2-4 \, \text{mrad}$$

• estimated source size $\sigma_{x_0} = 3\mu m$

E. Brunetti et al., Phys. Rev. Lett. 105, 2010

- with beam waist at the exit of the LWFA
- same parameters in both planes

Linear Layout of the Transport System

- initial divergence
 → large beta functions
- high quadrupole strengths required
- longitudinal phase space not considered

Fig.: Linear beam functions calculated with MAD-X.

Linear Layout of the Transport System

- initial divergence
 → large beta functions
- high quadrupole strengths required
- longitudinal phase space not considered

Fig.: Linear beam functions calculated with MAD-X.

Chromatic Correction of the Transport System

Chromatic correction with combined quadrupole-sextupoles

- \Rightarrow requires $D \neq 0$
 - S_{41} and S_{42} : large $\beta_{x,y}$ \rightarrow strong distortion
 - correction mainly at
 S₆ and S₈ preferable

Fig.: Linear beam functions calculated with MAD-X.

Phase Space Distribution with Correction

 $\Delta \dot{E} = 0$

0.5

uncorrected

corrected

-1 -0.5 0

-1 -0.5 <x> [mm]

x [mm]

0.5 1

0.5

< [mrad]

k' [mrad]

x' [mrad]

x'> [mrad] 0.1

0

0 -1 -2

0 -1 -0.5

-1 -0.5 0 0.5 1

y [mm]

0

ΔE/E [%]

0.25 0.5

-0.5 -0.25

Phase Space Distribution with Correction

Phase space distributions calculated with PTC.

- $\langle x' \rangle$ in required range
- strong distortion in (x, x')
- increase of nonlinearities, but no improvement on correction with higher sextupole strengths

Reasons for that?

- strong quadrupoles
 - \rightarrow large chromatic abberation
- emittance too large

Phase Space Distribution with Correction

Phase space distributions calculated with PTC.

- $\langle x' \rangle$ in required range
- strong distortion in (x, x')
- increase of nonlinearities, but no improvement on correction with higher sextupole strengths

Reasons for that?

- strong quadrupoles
 - \rightarrow large chromatic abberation
- emittance too large

Variation of Source Size and Initial Divergence

$\Delta E/E = \pm 1.0\%$

Source size σ_{x_0} increase to 8 μ m decrease to 1 μ m

 slight increase of divergence with increasing σ_{x0}

Initial divergence σ_{x'0}
 decrease to 2 mrad and 1 mrad
 reduction of beam size
 less distortion of phase space distribution

Variation of Source Size and Initial Divergence

$\Delta E/E = \pm 1.0\%$

Source size σ_{x_0} increase to 8 μ m decrease to 1 μ m

 slight increase of divergence with increasing σ_{x0}

Initial divergence $\sigma_{x'_{a}}$

decrease to 2 mrad and 1 mrad

- reduction of beam size
- less distortion of phase space distribution

Radiation Spectra with Reduces Divergence

simulation of the radiation spectra with WAVE¹

⇒ reducing the divergence leads to significantly improved results

¹M. Scheer, ICAP'12, TUACC2 (2012)

Summary and Outlook

Layout of the beam transport system with combined function magnets:

- high quadrupole strengths required up to k = 70/m²
- chromatic correction causes strong nonlinearities
- emittance and divergence of the source are the limiting parameters for the chromatic correction

next steps

iterative co-optimization of undulator and beam parameters
 investigation of higher order multipole correction schemes
 improvement of source parameters is essential

Summary and Outlook

Layout of the beam transport system with combined function magnets:

- high quadrupole strengths required up to k = 70/m²
- chromatic correction causes strong nonlinearities
- emittance and divergence of the source are the limiting parameters for the chromatic correction

next steps

- iterative co-optimization of undulator and beam parameters
- investigation of higher order multipole correction schemes

improvement of source parameters is essential

Summary and Outlook

Layout of the beam transport system with combined function magnets:

- high quadrupole strengths required up to k = 70/m²
- chromatic correction causes strong nonlinearities
- emittance and divergence of the source are the limiting parameters for the chromatic correction

next steps

- iterative co-optimization of undulator and beam parameters
- investigation of higher order multipole correction schemes
- improvement of source parameters is essential