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Abstract

Optical systems for transverse-to-longitudinal emittance

exchange involving single dipole-mode cavity were in great

details studied during the last decade theoretically and ex-

perimentally. In this paper we discuss the question, if there

are any advantages in usage of beamlines utilizing two de-

flecting cavities instead of one.

INTRODUCTION

Transverse-to-longitudinal emittance and phase space ex-

changers (EEXs) received large attention during the last

decade and many interesting applications of such beamlines

were proposed [1–6]. EEXs involving single transverse de-

flecting cavity (TDC) were already in great details studied

theoretically and experimentally, and in this paper we con-

sider EEXs utilizing two (identical in design and with equal

in magnitude excitations) TDCs instead of one. We show

that it allows not only to compensate for the so-called thick-

lens effect (i.e. particle energy change in the deflecting cav-

ity), but also gives possibilities to design mirror symmet-

ric beamlines and beamlines which, without any further re-

tuning of magnets, provide dispersion free beam transport

when TDCs are switched off. Due to space limitation, we

mostly concentrate on the necessary and sufficient condi-

tions on the matrices of the subsections of the beamline to

effect an EEX with the desired properties (i.e. give exis-

tence proofs) and the more detailed paper with the design

examples will follow.

PRELIMINARIES

We consider the single particle linear dynamics in the hor-

izontal and longitudinal degrees of freedom, describe it by

the 4 × 4 transport matrices and ignore the motion in the

vertical degree of freedom, which (on the linear level) is

assumed to be decoupled from the two others. We also as-

sume that all 4 × 4 matrices, which we will meet in this pa-

per, are symplectic and will index their elements as if these

matrices were extracted from the complete three degrees of

freedom 6 × 6 beam transport matrices, where the first de-

gree of freedom is horizontal, the second is vertical, and the

longitudinal comes as the third.

Matrix of a Magnetostatic System

From energy conservation, symplecticity and absence of

coupling with the vertical degree of freedom it follows that

the 4× 4 horizontal-longitudinal transport matrix of a mag-

netostatic system has the form

∗ vladimir.balandin@desy.de

M =



m11 m12 0 m16

m21 m22 0 m26

m51 m52 1 m56

0 0 0 1


, (1)

where (due to symplectic conditions) its elements satisfy

m11m22 − m12m21 = 1, (2)

m16 = m11m52 − m12m51, (3)

m26 = m21m52 − m22m51. (4)

Let B be the matrix of a beamline which is mirror sym-

metric to the magnetostatic beamline with the transport ma-

trix A. Then

b52 = −a16, b51 = −a26, (5)

and if B describes a beamline which is mirror antisymmet-

ric to the beamline described by the matrix A (reversed and

then rotated by 180◦ around the longitudinal axis), then

b52 = a16, b51 = a26. (6)

What is also important for the further considerations, it

is the fact that any symplectic matrix of the form (1) can be

decomposed into the products

M = M (1) M (0)
= M (0) M (2) , (7)

where

M (0)
=



m11 m12 0 0

m21 m22 0 0

0 0 1 m56

0 0 0 1


, (8)

M (1)
=



1 0 0 m16

0 1 0 m26

−m26 m16 1 0

0 0 0 1


, (9)

M (2)
=



1 0 0 m52

0 1 0 −m51

m51 m52 1 0

0 0 0 1


. (10)

Matrix of a TDC

In this paper we do not go beyond the approximation for

the matrix of a horizontally deflecting cavity, which was

used in all papers cited above, and take it in the usual form

R(κ, lc , q) =



1 lc κlc/2 0

0 1 κ 0

0 0 1 0

κ κlc/2 qκ2lc 1


, (11)

where lc is the cavity length, κ is its deflecting strength, and

the value of the energy gain factor q depends from the par-

ticular cavity design. For example, for the n-cell pillbox

resonator it is given by the expression
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q =
(

1 + 2n2
)

/
(

12n2
)

(12)

and satisfies 1/6 < q ≤ 1/4.

Approximations made in the equations of motion in or-

der to obtain the matrix of a TDC in the form (11) in-

clude among others the neglection of the terms of the order

O(1/γ2
0
), where γ0 is the Lorentz factor of the reference par-

ticle. To be consistent with this, we will assume that these

terms were also neglected during derivation of the matrices

of all other beamline elements. With this convention the

matrix of a drift of the length l has the form

D0(l) =



1 l 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(13)

and for the TDC matrix one obtains

R(κ, lc , q) = D0(lc/2) C(κ, qlc ) D0(lc/2), (14)

where

C(κ,w) =



1 0 0 0

0 1 κ 0

0 0 1 0

κ 0 wκ2 1


. (15)

Matrix of an EEX

EEX is a beamline with the transfer matrix T which,

when partitioned into 2 × 2 submatrices

T =

[
T11 T13

T31 T33

]
, (16)

has the blocks T11 = T33 = 0. So the eight elements of the

matrix T must be equal to zero, but it gives only four inde-

pendent constraints because owing to the symplectic condi-

tions equations T11 = 0 and T33 = 0 are equivalent.

Let us consider a beamline with several TDCs and let

us point out two technical tricks, which essentially simplify

derivation of the conditions which the matrices of the sub-

sections of the beamline must satisfy to effect an EEX:

• Let A and B be the matrices of the type (1) and let M

be an arbitrary 4 × 4 symplectic matrix. Then the ma-

trix BM A is an EEX matrix if and only if the same is

the matrix B(2) M A(1) . It means that only the elements

a16 and a26 of the matrix A and only the elements b51

and b52 of the matrix B are of importance for an EEX

design.

• Drifts from the formula (14) can be included into the

matrices of the neighboring to the TDC magnetostatic

beamline parts and therefore the matrix (15) can be

used instead of the matrix (11) during calculations.

EEX with a Single TDC

General requirements on the subsections of the beamline

before and after a TDC and on the TDC itself to effect an

EEX were obtained for the first time in [3]. In our notations

they can be obtained from the analysis of the matrix

T = B(2) C(κ, w) A(1) (17)

and are as follows

b52 = a16, b51 = −a26, (18)

w = qlc = 0, a16 κ = −1. (19)

Ignoring for a while the first of Eqs. (19) and comparing

(18) with (5) one sees that the beamline after the TDC can

not be a mirror symmetric image of the beamline before

the TDC (see also [6]). On the other hand, looking at (6)

one observes that if a26 = 0 and the beamline described

by the matrix B is an antisymmetric image of the beamline

associated with the matrix A, then the conditions (18) are

fulfilled automatically, which includes as partial case the

two dogleg solution [2].

COMPENSATION OF THICK-LENS

EFFECT WITH QUADRUPOLE OPTICS

The first of Eqs. (19) tells us that the emittance exchange

employing single TDC can not be made exact even in a lin-

ear sense if the effect of the particle energy change due to the

thickness of the deflecting cavity (thick-lens effect) is not

completely negligible. Until now two approaches to over-

come this problem were known: either use of an additional

accelerating mode cavity operated at zero-crossing [4] or

application of the scheme involving three TDCs [5]. In

this section we present new solution utilizing two TDCs by

showing that for given w , 0 and δ = ±1 there exist æ , 0

and matrices A, N and B of the type (1) such that the equa-

tion

B C(δκ,w) N C(κ,w) A = C(æκ,0) (20)

holds for an arbitrary value of κ.

Skipping the solution process, we state that the general

solution of Eq. (20) requires

a16 = a26 = a56 = 0, a12 , 0, (21)

n16 = n26 = n56 = 0, n12 = −2 δ w, (22)

b16 = b26 = b56 = 0, (23)

which, in particular, means that the matrices A, N and B

can be created by using quadrupole magnets only.

The general solution depends from four parameters, and

if one takes as such free parameters the quantities

n11, n22, a11, a12 , 0, (24)

then

æ = 2w / a12, (25)

a22 = a12 (1 + δn11) / (2w), (26)

b11 = δa12(1 + δn22) / (2w), b12 = δa12, (27)

b22 = δ (2w / a12 − a11), (28)

and the remaining matrix elements a21, n21, and b21 are

uniquely determined according to Eq. (2).

The above requirements on the matrices A, N , and B are

actually not so complicated as it might seem at the first sight.

They can be satisfied even by using only one quadrupole

per matrix, but unfortunately all these quadrupoles must be
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vertically defocusing. As one more example, let us point

out that the matrices

A = D0(w), N = IδD0(−2w), B = IδD0(w), (29)

where Iδ = diag(δ, δ,1,1), also solve Eq. (20) with æ = 2.

It is clear that the beamline satisfying Eq. (20) can be

used in any situation where the TDC with the compensated

thick-lens effect is needed, in particular in EEXs. But, as

concerning EEXs, additional simplification is possible, be-

cause, as discussed in the previous section, the property of

the beamline to be an EEX constrains only dispersive ele-

ments of the matrices representing the beamline parts be-

fore the first and after the last TDC. So, for an EEX design,

it is sufficient to consider the matrix

T = B(2) C(δκ,w) N C(κ,w) A(1) , (30)

where the matrix N is such as required by the solution of

Eq. (20). One can show that this matrix is an EEX matrix

if and only if

b52 = −δ [1 + (a16κ)] / κ, (31)

a26 = [1 + (1 + δn11) · (a16κ)] / (2wκ), (32)

b51 = − [n22 + (δ + n22) · (a16κ)] / (2wκ), (33)

where a16 and κ , 0 are the free parameters.

Let us consider the partial case when the beamline after

the second TDC is the mirror symmetric image of the beam-

line before the first TDC and let us assume additionally that

for the entrance beamline a26 = 0. These requirements lead

to the conditions

δ = −1, 2a16κ = −1, N = I−1D0(−2w), (34)

which, for example, can be satisfied by employing symmet-

ric quadrupole triplet for the construction of the matrix N

and for the simultaneous control of the vertical focusing. It

gives, in particular, a mirror symmetric EEX where the two

TDCs separated by the symmetric quadrupole triplet are in-

serted in the middle of the four bend magnetic chicane.

EEX WORKING FOR AN ARBITRARY

VALUE OF THE ENERGY GAIN FACTOR

In the design of an exact (in the linear sense) EEX one do

not have to consider Eq. (20) first, but can start straight from

the matrix (30) and look for the conditions under which

this matrix is an EEX matrix. Unfortunately, it is not the

easy task to find the general solutions of this problem in the

analytical form, and we restrict ourselves to the search for

the partial solutions with special additional properties. One

such partial solution in which the matrix N is the matrix of

a drift-quadrupole system was provided in the previous sec-

tion, and in this section we give a partial solution which is

valid for an arbitrary value of the energy gain factor q.

Because the elements of the submatrices T11 and T22

are second order polynomials with respect to the variable

w = qlc , the matrix T will be an EEX matrix independently

of the particular q value if and only if all coefficients of these

polynomials are equal to zero. It, in the next turn, can be

achieved if and only if the following conditions on the ele-

ments of the matrices A, N and B are fulfilled

n11 , −δ, n12 = 0, n16 , 0, n56 = 0, (35)

n16 κ = −
2 n11

1 + δ n11

, (36)

a16 =
1 − n2

11

1 + n2
11

n52

2
, a26 = −

1 − n2
11

1 + n2
11

n51

2
, (37)

b51 =
1 − n2

11

1 + n2
11

n26

2
, b52 = −

1 − n2
11

1 + n2
11

n16

2
, (38)

which gives a general solution of the problem considered.

EEX WHICH TURNS INTO DISPERSION

FREE BEAMLINE WITH CAVITIES OFF

Unfortunately, for an arbitrary choice of their free param-

eters, the EEXs described in the two preceding sections can

not provide dispersion free beam transport when TDCs are

switched off, but all other elements in the beamline (mag-

nets) remains untouched. To prove that such beamline is

possible at all, one has to point out the conditions under

which the matrix (30) is an EEX matrix and, simultane-

ously,

b51 = n26 + n21 a16 + n22 a26, (39)

b52 = −n16 − n11 a16 − n12 a26, (40)

which are requirements for the matrix B(2) M A(1) to be dis-

persion free. Because in such a general formulation the

problem is still too complicated for finding a general solu-

tion, in order to complete the existence proof we provide the

partial solution

a26 = n21 = n26 = n56 = b51 = 0, (41)

n11 =
δ

2
(n16κ)

2, (42)

n12 = −
1 + [(n16κ) + δ]

2

(n16κ)
w, (43)

a16 = −
(n16κ) + δ

1 + [(n16κ) + δ]2

2

(n16κ)
δn16, (44)

b52 = −
(n16κ) + 2δ

1 + [(n16κ) + δ]2
δn16. (45)

where n16 , 0 and κ , 0 are the free parameters.
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