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Abstract
Optics measurement algorithms which are based on the

measurement of beam position monitor (BPM) turn-by-turn
data are currently being improved in preparation for the com-
missioning of the LHC at higher energy. The turn-by-turn
data of one BPM may be used more than once, but the im-
plied correlations were not considered in the final error bar.
In this paper the error propagation including correlations is
studied for the statistical part of the uncertainty. The confi-
dence level of the measurement is investigated analytically
and with simulations.

INTRODUCTION
BPMs are used to measure the turn-by-turn data of beta-

tron oscillations, which are excited by an AC dipole [1]. The
phase of this oscillation can be derived by a harmonic analy-
sis of the turn-by-turn data at every BPM position using a
modified version of SUSSIX [2, 3]. With the phase advance
and transfer matrix in between three BPMs the β-function
can be calculated at the positions of the three BPMs [4]. The
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Optics measurement algorithms have been improved in preparation for the commissioning of the
LHC at higher energy. The previous resolution was insufficient to understand beam size measure-
ments and determine β∗. Measurements from the 2012 run have been re-analyzed which, due to the
improved algorithms, resulted in a significant higher accuracy of the derived Twiss parameters. This
allowed the calculation of β∗ values and demonstrated to be fundamental in the understanding of
emittance evolution. Furthermore β-beating estimates for operation at higher energy are presented.

I. INTRODUCTION

Optics measurements and corrections are of great im-
portance for the LHC, due to its tight design tolerances
for the beam orbit and optical functions. A large effort
has been put in the LHC optics commissioning and in
2012 a record low β-beating was achieved [1–5]. During
the ongoing long shutdown (LS1) in 2014, improvements
of the optics measurement methods are being studied.
In Section II a new algorithm is described, which takes
more beam position monitor (BPM) combinations into
account and selects the ones which are best suited for
the measurement. Another improvement which is used
here is the cleaning of measurement data using a singu-
lar value decomposition (SVD) technique, which is ap-
plied on the BPM turn-by-turn data. Improvements of
the optics model for the analysis lead to a higher accu-
racy of measured optics parameters, which is described
in Section III. Furthermore a more accurate calibration
of MQY magnets is used, which has been verified in a
dedicated machine development session [6]. These im-
provements allowed to calculate β∗ and dispersion values
for the β∗ = 0.6 m optics. With this enhanced precision
it was possible to derive reliably the β-values at the po-
sition of the wire scanners during the energy ramp. The
emittance study during the energy ramp profited highly
from the more accurate β values [7, 8]. The propagation
of measured optics parameters and their uncertainty to
other elements is described in Section IV. In Section V
results from re-analyzing experimental data from 2012
are presented and in Section VI estimates for β-beating
at 6.5 TeV in 2015 are given.

II. 7-BPM METHOD

BPMs are used to measure the turn-by-turn data of
betatron oscillations, which are excited by an AC dipole
[9]. The phase of this oscillation can be derived by a har-
monic analysis of the turn-by-turn data at every BPM

position. With the phase advance and transfer matrix in
between three BPMs the β-function can be calculated at
the position of the three BPMs [10]. The Twiss param-
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FIG. 1. Illustration of the β-function from phase measure-
ment. The phase advances φi,j in between three positions si
are needed to derive the β-functions at those positions.

eters βi and αi at the positions si can be obtained with
Eqs. (1, 2) where φi,j is the phase advance and Mmn(i,j)

are the transfer matrix elements from si to sj , cf. Fig. 1.
εijk is the Levi-Civita symbol which allows for a compact
notation of the three cases of deriving the Twiss param-
eters at the different BPMs. No summation over equal
indices is implied.

βi =
εijk cot(φi,j) + εikj cot(φi,k)

εijk
M11(i,j)

M12(i,j)
+ εikj

M11(i,k)

M12(i,k)

(1)

αi =
εijk

M11(i,k)

M12(i,k)
cot(φi,j) + εikj

M11(i,j)

M12(i,j)
cot(φi,k)

εijk
M11(i,j)

M12(i,j)
+ εikj

M11(i,k)

M12(i,k)

. (2)

The accuracy of this method depends not only on the
knowledge of the optics model and the precision of the
measured phase but also on the value of the phase ad-
vances between two BPMs. From Eq. (1) it can be seen
that, for example, a phase advance between two BPMs
should not be close to a multiple of π as the cotangent
becomes infinite at those points. Figure 2 shows the prop-
agated error of the β-function, depending on the phase
advances between the three BPMs. From Eq. (1) one
can derive two conditions for the optimal phase advances.
The phase advance from the probed BPM (i) to the other

Figure 1: The phase advances φi, j in between three positions
si are needed to derive the β-functions at those positions.

β-function at the positions si can be obtained with Eq. (1)
where φi, j is the phase advance and Mmn(i, j ) are the transfer
matrix elements from si to s j , cf. Fig. 1. ε i jk is the Levi-
Civita symbol which allows for a compact notation of the
three cases of deriving the Twiss parameters at the different
BPMs. No summation over equal indices is implied.

βi =
ε i jk cot(φi, j ) + ε ik j cot(φi,k )

ε i jk
M11(i, j )

M12(i, j )
+ ε ik j

M11(i,k )

M12(i,k )

(1)

The usual measurement procedure in the 2012 run was to
record at least three times the BPM turn-by-turn data for
2000 turns, while an oscillation is excited on the beam [5].
The phase advances are then averaged among the measure-
ment files.

∗ andy.langner@cern.ch

Uncertainty of the Measured β-function
If Eq. (1) is used to derive the β-function, two phase ad-

vances between BPMs are used (φi, j , φi,k ) in which the
BPM (i) appears twice. This introduces a correlation which
must be regarded in the error propagation. Furthermore the
β-function at one position is calculated by combining three
β-functions that are obtained from using different BPM com-
binations, which increases the contribution of correlations,
because the same BPMs might be used more often. The
error of the measured phase advance can be derived from
the standard deviation

σφi, j = t(n)

√√
1

n − 1

n∑
k=1

(
φi, j − φi, j, (k )

)2
(2)

where t(n) is the t value correction from the Student t dis-
tribution, which compensates the underestimation of the
uncertainty for a small sample size. During the LHC Run I
the error was calculated from a normal standard deviation
without the t correction and by dividing the sum by n instead
of (n-1). This has been changed since the mean value of
the phase advance is also obtained from the measurements,
and there are only (n-1) degrees of freedom left for the cal-
culation of the standard deviation. Table 1 shows t(n) for
different number of measurements, which shows that this
correction is needed since due to limits in the beam time,
the amount of measurements is always limited. The corre-

Table 1: Values for the t Correction for a Confidence Interval
of 68.3%

Number of measurements t (n)

2 1.84
3 1.32
4 1.20
5 1.15
10 1.06

lation between two phase advances which have one BPM
in common, φi, j and φi,k , depends on the uncertainty of
the single phase φi at the common BPM. The error of the
single phase φi is not known, because it cannot be compared
among the measurement files since its value is arbitrary and
may vary. However simulations show that the uncertainty
of the phase measurement depends on the β-function at this
position, σφ ∼ β−

1
2 cf. Fig. 2. Therefore the error of the

single phase can be approximated by

σφi = σφi, j

(
1 +

βi
β j

)− 1
2

. (3)
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Figure 2: Simulated single phase uncertainties depending
on the β-function. The error has been derived from the
variation of the phase when a Gaussian noise of 300 µmwas
added to the BPM turn-by-turn data which was obtained
from tracking with MAD-X [6].

The correlation between two phase advances is then

ρ(φi, j , φi,k ) =
σ2
φi

σ2
φi, j

σ2
φi,k

. (4)

Let the phase at the probed BPM be φ1, all other phase
advances can be calculated with respect to this BPM. The
elements of the correlation matrix for the different phase
advances φ1,2 to φ1,n are defined by

Ci−1, j−1 =
∂φ1, i

∂φ1

∂φ1, j

∂φ1
ρ(φ1, i , φ1, j )σ2

φ1, i
σ2
φ1, j

, (5)

which isσ2
φ1, i

on the diagonal axis andσ2
φ1

elsewhere. Using
the transformation matrix

T =
*....
,

∂β1
∂φ1,2

· · ·
∂β3
∂φ1,2

...
. . .

...
∂β1
∂φ1,n

· · ·
∂β3
∂φ1,n

+////
-

, (6)

the correlation matrix for the phases can be transformed
to a correlation matrix for the three β-functions which are
calculated from using different BPM combinations,

V = TTCT. (7)

The final β-function is then a weighted average of the three
βi

β =

3∑
i=1

wi βi (8)

where the weights can be calculated from the inverse corre-
lation matrix

wi =

∑3
k=1 V−1

ik∑3
k=1

∑3
j=1 V−1

jk

(9)

This equation replaces the simple average introduced in [7].
The uncertainty for this measurement is

σ2
β =

3∑
k=1

3∑
j=1

w jwkVjk (10)

Simulation of the Uncertainties
In order to determine the requirements on the number of

measurements for a reasonable error bar, simulations of the
optics measurement have been performed. These simula-
tions are furthermore a test of the correct implementation
of the equations in the optics analysis code. Particles were
tracked for 2000 turns using MAD-X, while at the begin-
ning a kick with an amplitude of 1mm was applied to the
particle. The oscillations of the orbit at the BPM positions
were recorded and afterwards a Gaussian noise of 300 µm
was added. This has been done to create 500 sets of BPM
turn-by-turn data, which corresponds to 500 measurements.
Since in contrast to a real measurement, in this simula-

tion the phase at each BPM is comparable, it is possible to
derive the uncertainty of the phase for each BPM position
from its variation. As the uncertainties of the single phases
and also of the phase advances are known, they were used
directly in Eq. (4) to create the correlation matrix. The afore
described error propagation was applied and the β-function
derived according to Eq. (8), with its uncertainty according
to Eq. (10).
The distribution of the β-function in these 500 data sets

has been fitted to a Gaussian for each BPM. The value of the
σ from the fit was then compared to calculated uncertainties
of the β-function, cf. Fig. 3. The calculated values of the
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Figure 3: Relative uncertainty of the β-function derived in
the error propagation compared to a fit of the variation of
calculated β-functions.

uncertainty fit well to the expected value from the variations
of the β-function, which is not the case for the old equations
for the error calculation. In this plot one can furthermore see
that most of the points are located at two levels. This is due
to the fact that the BPMs in the arcs, which are most of the
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BPMs, are alternating between two β values, and the larger
β-function can be measured with a higher relative precision.

Uncertainty of the Error Bar
The study of the uncertainty of the error bar gives an im-

portant insight in the accuracy of the measurement method
and will give a recommendation of how many measurements
need to be taken for a reliable result. Simulated turn-by-turn
data with the same noise level as before were used for this
analysis. Several measurement files were now used together
for one analysis, which means that the error of the phase
advance is now to be calculated from Eq. (2) by using the
standard deviation of the phase advances from the different
measurements. This was done for the range of using two
to ten measurement files together, and repeated for the 500
measurement files. The deviations of the calculated error bar
of the β-function to the uncertainty that is calculated from
the known phase uncertainty is fitted with a Gaussian distri-
bution. The σ of this fit is shown in Fig. 4 as a distribution
for all BPMs. This plot shows that the precision of the error
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Figure 4: The distribution shows for all BPMs the width of
the deviation of the derived uncertainty of the β-function
compared to the calculated error bar from the known phase
uncertainty.

bar is poor if only three measurements are used, reaching an
uncertainty of up to 60%. Significantly more precise is the
error bar when using five measurements, where its uncer-
tainty varies from 20-35%. This number further decreases
when more measurements are used, for ten measurements
the uncertainty is only at 10-22%.
The mean value of fitting the deviation of the error bar

to the real uncertainty with a Gaussian distribution shows if
either the error bar is biased towards smaller or larger values,
which is shown in Fig. 5. One can see in this plot that for
three measurements the distribution is not centered around
zero, but at a positive value, which means that there is ten-
dency to overestimate the error bar. Also the width of the
distribution is rather large when using less than five measure-
ments. This also shows that the t value correction is useful,
as without it the error bars were biased to underestimate the
real error.
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Figure 5: The distribution shows for all BPMs the mean of
the deviation of the derived uncertainty of the β-function
compared to the calculated error bar from the known phase
uncertainty.

CONCLUSION
An improved method for deriving the β-function from

BPM turn-by-turn data has been presented which makes use
of the individual uncertainties of the measured phases at
each BPM. It also takes correlations into account when the
phase at one BPM is used more often, if the β-function at
one location is derived by using different BPM combina-
tions. This will allow for a more precise measurement of the
β-function. The presented error bar is based on the statis-
tical uncertainty of the measured phase. Systematic errors
arising from model uncertainties will have to be added to
the correlation matrix, which is not shown here. The study
of the statistical error bar shows that it is recommended to
take at least five measurements for the analysis.
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