

Design Study of the SuperKEKB Interaction Region Optics

H. Sugimoto, Y. Ohnishi, A. Morita, H. Koiso, K. Oide

High Energy Accelerator Research Organization (KEK)

This Talk

SuperKEKB

Background

- SuperKEKB collider
- Optics and beam dynamics requirements

Design overview of the interaction region

- Numerical modeling
- Liner optics and dynamic aperture optimization

A design study on an imperfection of final focus magnets

- Numerical study
- Corrector coil arrangement

A New Luminosity Frontier

SuperKEKB

An upgrade project of KEKB for a new luminosity frontier.

IPAC'14 @ Dresden, Germany

SuperKEKB

N. Ohuchi, et.al., WEOCA01

Beam commissioning will start 2015.

KEKB to SuperKEKB

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \right) \left(\frac{R_L}{R_y} \right) = 8 \times 10^{35} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$$

e⁺

Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm (× 20)

Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A}$ (x 2)

Beam-beam parameter: $.09 \rightarrow .09$ (× 1)

▶ Beam energy: $3.5/8.0 \rightarrow 4.0/7.0$ GeV

Requirements

Extremely small beta functions

 $\beta_v = 0.27 / 0.30 \text{ mm}$ $\beta_{\rm r} = 32 / 25 \, {\rm mm}$

Low emittance beams

 $\varepsilon_v = 3.2 / 4.6 \text{ nm}$ $\varepsilon_v = 8.6 / 12.9 \text{ pm}$

Sufficient Dynamic Aperture (DA) for Touschek lifetime > 600 sec

Low beam background to the detector Fit in the existing KEKB tunnel

Interaction Region (IR)

Essential difference, compared to light-source rings

Extremely strong focus and detector solenoid field

Huge chromaticity, kinematic term, non-liner magnetic field, vertical emittance source, X-Y coupling, etc.

Final focus system

<image>

Final Focus System (QCS)

N. Ohuchi, et.al., WEPRI087

- All magnets except for QC1Ps have iron or permendur yoke for preventing leakage fields to the opposite beam line.
- Canceller coils are installed in the HER beam line to suppress the leakage fileds from QC1Ps.
- All magnets have superconducting corrector coils.
 Normal&Skew Dipole, Skew Quad
 - Octcupole and sextupole coils are also available.

Numerical Modeling

3D Field Calculation (ANSYS)

Optics Calculation (SAD)

Modeled by series of multipole slices attached to the beam line.
Their strengths are obtained by 3D multipole expansion of the field data.

$$\boldsymbol{B} = \nabla \phi \qquad \phi(r, \theta, z) = \Im \left[\sum_{n=0}^{\infty} r^n e^{in\theta} \sum_{m=0}^{\infty} \frac{(-1)^m n! r^{2m}}{4^m m! (n+m)} \frac{d^{2m}}{dz^{2m}} d_n(z) \right]$$

IPAC'14 @ Dresden, Germany

Compensation Solenoid

Install to mitigate the detector solenoid effect.

- $\int B_z dz \sim 0$ for mitigation of horizontal-vertical coupling. - Suppress $\frac{\partial B_z}{\partial z} z$ to decrease vertical emittance. $\therefore B_x \sim -\frac{1}{2} \frac{\partial B_z}{\partial z} x = -\frac{1}{2} \frac{\partial B_z}{\partial z} z \tan \phi_{sol}$

IPAC'14 @ Dresden, Germany

Local Chromaticity Correction (LCC)

Natural chromaticity

	SuperKEKB		KEKB	
	LER	HER	LER	HER
Horizontal	-105	-171	-72	-70
Vertical	-776	-1081	-123	-124

HER LCC Optics

Octupole Corrector

Original purpose

Cure the non-linear fringe of the final focus quadrupoles

Fringe effect from a quadrupole magnet

$$egin{aligned} x & o x \pm rac{b_2}{12\,(1+\delta)}\,ig(x^3+3y^2xig) & y o y \pm rac{b_2}{12\,(1+\delta)}\,ig(y^3+3x^2yig) \ p_x & o p_x \pm rac{b_2}{4\,(1+\delta)}\,ig(2xyp_y-x^2p_x-y^2p_xig) & p_y o p_y \pm rac{b_2}{4\,(1+\delta)}\,ig(2xyp_x-y^2p_y-x^2p_yig) \end{aligned}$$

Actual usage

Manipulate the Hamiltonian torus so that a particle with large action variable can pass through the IR physical aperture.

Utilized especially in LER

QCS Imperfection

- Unexpected normal and skew sextupole have been observed.
- Amplitude is ~0.1% of the quadrupole field.
- Likely due to misalignment of the main coils of a few tens of μ m.

Field profile along QC1P prototype

QC1P Prototype

Coil misalignment model (Transverse plane)

Numerical Study

- Thin lens sextupoles are inserted to QC1L and QC1R.
- Their magnitudes are identical, while signs are independent.
- Evaluate DA for 4 possible combinations of signs at each error amplitude.

Install Sextupole Corrector?

Only right-side design can be changed. (Light-side has been fixed)
 The location between QC1 and QC2 considered to be a candidate.

DA Improvement by Corrector Coil

- Introduce sextupole error to ALL QCs.
- Check whether we can mitigate DA degradation by optimizing the corrector strength.

▶ DA degradation is improved, but B3/B2 < 0.1% is preferable.

Skew Sextupole Error Field

- Similar calculation for skew sextupole error field.
- DA Improvement is not enough level compared to the sextupole case.

Lifetime and Corrector Coil Position

- DA survey with changing corrector position.
- Only QC1RP has skew sextupole error.

Original Design

Summary

The SuperKEKB IR optics design has been finalized.

Linear Optics

- The solenoid field is optimized by minimizing X-Y coupling and vertical emittance.

DA optimization

 Chromaticity correction and the Down-hill simplex method. Knobs are
 54 pairs of sextupole magnets along the ring Octupole correctors (3/LER, 2/HER)

Sextupole error field of QCs

- Effect on DA is very critical.
- Decided to install correctors with consideration on

fabrication schedule and the space limitation.

Machine Parameters

	LER	HER	
Energy (GeV)	4.0	7.007	
Current (A)	3.6	2.6	
#of bunches	2500	2500	
${\beta_x}^*$ (mm)	32	25	
${\beta_y}^*$ (mm)	0.27	0.30	
$\mathbf{\epsilon}_{x}^{*}$ (nm)	3.2	4.6	
$\mathbf{\epsilon}_{y}^{*}$ (pm)	8.64	11.5	
$\sigma_{\!z}^{*}$ (mm)	6	5	
v_x , v_y	44.53 , 46.57	45.53 , 43.57	
\mathcal{V}_{S}	-0.0247	-0.0280	
ξ _y	0.0881	0.0807	
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	$8x10^{35}$		

14.6.17

IPAC'14 @ Dresden, Germany