Author: van Rienen, U.
Paper Title Page
MOACC3 Tracking of a PETRA III Positron Bunch with a Pre-Computed Wake Matrix due to Electron Clouds 31
 
  • A. Markoviḱ, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  Funding: Work supported by DFG under contract number RI 814/20-2.
At the synchrotron radiation facility at DESY transversal tune spectra have been observed which are characteristic for an interaction of the positron beam with possible electron clouds in the ring. The filling patterns at which this incoherent tune shifts happen are favourable to the growth of the electron density, i.e. long bunch trains with short intra-bunch distances or filling with short trains but also short distances between the trains. Eventually the vertical emittance growth with the originally designed equidistant filling (with 8 or 16 ns bunch spacing) has been avoided by fillings with shorter trains and longer gaps between the trains by still achieving the designed beam current of 100 mA. In this paper we examine the positron bunch stability of PETRA III for certain e-cloud densities and bunch parameters. A PIC simulation of the interaction of the bunch with an e-cloud yields the wake kick on the tail particles for an offset in the transverse centroid position of the head parts. With such a pre-computed wake matrix, we investigate the stability of a single bunch by tracking it through the linear optics of the ring while at each turn applying the kick from the e-cloud.
 
slides icon Slides MOACC3 [5.237 MB]  
 
MOADC2 Implementational Aspects of Eigenmode Computation Based on Perturbation Theory 48
 
  • K. Brackebusch, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  Funding: Work supported by Federal Ministry for Research and Education BMBF under contracts 05H09HR5 and 05K10HRC.
Geometry perturbations affect the eigenmodes of a resonant cavity and thereby can improve but also impair the performance characteristics of the cavity. To investigate the effects of both, intentional and inevitable geometry variations parameter studies are to be undertaken. Using common eigenmode solvers involves to perform a full eigenmode computation for each variation step, even if the geometry is only slightly altered. Therefore, such investigations tend to be computationally extensive and inefficient. Yet, the computational effort for parameter studies may be significantly reduced by using perturbative computation methods. Knowing a set of initial eigenmodes of the unperturbed geometry these allow for the expansion of the eigenmodes of the perturbed geometry in terms of the unperturbed modes. In this paper, we study the complexity of a numerical implementation of perturbative methods. An essential aspect is the computation and analysis of the unperturbed modes since the number and order of these modes determine the accuracy of the results.
 
slides icon Slides MOADC2 [2.431 MB]  
 
MOADC3 An Application of the Non-conforming Crouzeix-Raviart Finite Element Method to Space Charge Calculations 51
 
  • C.R. Bahls, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  The calculation of space charge effects in linear accellerators is an important prerequisite to understand the interaction between charged particles and the surrounding environment. These calculations should be as efficient as possible. In this work we explore the suitability of the Crouzeix-Raviart Finite Element Method for the computation of the self-field of an electron bunch.  
slides icon Slides MOADC3 [1.028 MB]  
 
WEP01 Simulations for Ion Clearing in an ERL 143
 
  • G. Pöplau, A. Markoviḱ, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • A. Meseck
    HZB, Berlin, Germany
 
  Funding: supported by BMBF under contract no. 05K10HRC
Energy Recovery Linacs (ERLs) being the most promising candidates for next-generation light sources put very high demands on preservation of beam brightness and reduction of beam losses. Thus, it is mandatory to avoid the impact of ionized residual gas considered as a source for instabilities in accelerators. Recently, we have presented simulations for the clearing of ionized residual gas with electrodes performed with an upgraded version of software package MOEVE PIC Tracking [1] which is being currently further developed to model the interaction of the ions with the electron beam in presence of external electromagnetic potentials such as the field of clearing electrodes. The tracking code allows for studies on clearing times for electrodes with different voltage as well as detailed studies of the behavior of the ions in the environment of the electrodes. In this paper we take further steps to study possible designs of clearing electrodes. Especially, we will consider the influence of different gas mixtures on clearing times and possible configurations for the clearing electrodes. We use parameters planned for BERLinPro as an example for our studies.
[1] G. Pöplau, A. Meseck, U. van Rienen, Simulation of the Behavior of Ionized Residual Gas in the Field of Electrodes, IPAC 2012, New Orleans.
 
 
WEP02 Numerical Studies on the Influence of Fill Patterns on Ion Clouds 146
 
  • A. Meseck
    HZB, Berlin, Germany
  • G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  Funding: supported by BMBF under contract no. 05K10HRC
Energy Recovery Linacs (ERLs) are the most promising candidates for next-generation light sources now under active development. An optimal performance of these machines requires the preservation of the high beam brightness generated in the injector. For this, the impact of the ionized residual gas on the beam has to be avoided as it causes instabilities and emittance growth. Obviously, the vacuum chamber has to be cleared out of ions but as the potential of the electron beam attracts the ions, it is not enough to install vacuum pumps. One measure for ion clearing are gaps in the bunch train long enough that the ions have time to escape the force of the bunch potential. In this paper, we present numerical studies of the behavior of an ion cloud that interacts with a bunch train. Especially, we consider different distributions for the particles in the bunch, different fill patterns and several mixtures of ions in the residual gas. The simulations are performed with the package MOEVE PIC Tracking. The presented numerical investigations take into account the parameters of the ERL BERLinPro with the objective to deduce appropriate measures for the design and operation of BERLinPro.
 
 
WEP07 Traveling Poles Elimination Scheme and Calculations of External Quality Factors of HOMs in SC Cavities 152
 
  • T. Galek, T. Flisgen, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • A. Neumann
    HZB, Berlin, Germany
  • B. Riemann
    DELTA, Dortmund, Germany
 
  Funding: Funded by EU FP7 Research Infrastructure Grant No. 227579 and funding approved by German Federal Ministry of Research & Education, Project: 05K10HRC
The main scope of this work is the automation of the extraction procedure of the external quality factors Qext of Higher Order Modes (HOMs) in Superconducting (SC) radio frequency cavities [*]. The HOMs are generated by charged particle beams traveling at the speed of light through SC cavity. The HOMs decay very slowly, depending on localization inside the structure and cell-to-cell coupling, and may influence succeeding charged particle bunches. Thus it is important, at the SC cavity design optimization stage, to calculate the Qext of HOMs. The Traveling Poles Elimination (TPE) scheme has been used on scattering parameters spectra to obtain external quality factors. The combination of Coupled S-Parameter Calculations (CSC) method and vector fitting procedure allows us to study very complicated structures in much better details and almost automated extraction of HOMs' Qext factors. The results are also reasserted by careful eigenmode analysis of the SC cavity. The S-Parameter and eigenmode simulations were performed using CST Microwave Studio.
*Axel Neumann et al., "Status of the HOM Calculations for the BERLinPro Main Linac Cavity", FRAAC3 (this conference)
 
 
THACI1 Lumped Equivalent Models of Complex RF Structures 245
 
  • T. Flisgen, J. Heller, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  Funding: partly funded by EU FP7 Research Infrastructure Grant No. 227579
The prediction of RF properties of complex accelerating structures is an important issue in computational accelerator physics. This paper describes the derivation of state space equations for complex structures based on real eigenmodes of sections of the decomposed complex structure. The state space equations enable the calculation of system responses due to port excitations by means of standard ordinary differential equation solvers. Therefore, the state space equations are referred to as lumped equivalent models of such complex RF structures. Besides fast computation of system responses, the equivalent models enable the calculation of secondary quantities such as external quality factors. The present contribution discusses theoretical aspects and illustrates an application example.
 
slides icon Slides THACI1 [1.538 MB]  
 
FRAAC2 Arbitrary High-Order Discontinuous Galerkin Method for Electromagnetic Field Problems 275
 
  • K. Papke, C.R. Bahls, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  Funding: Work supported by Federal Ministry for Research and Education BMBF under contract 05K10HRC
For the design and optimization of Higher-Order-Mode Coupler, used in RF accelerator structures, numerical computations of electromagnetic fields as well as scattering parameter are essential. These computations can be carried out in time domain. In this work the implementation and investigation of a time integration scheme, using the Arbitrary high-order DERivatives (ADER) approach, applied on the Discontinuous Galerkin finite-element method (DG-FEM) is demonstrated for solving 3-D electromagnetic problems in time domain. This scheme combines the advantage of high accuracy with the possibility of an efficient implementation as local time stepping scheme, which reduces the calculation time for special applications considerable. It is implemented in NUDG++*, a framework written in C++ that deals with the DG-FEM for spatial discretization of the Maxwell equations. Accuracy and performance is analyzed by a suitable benchmark.
* Nodal Unstructured Discontinuous Galerkin in C++
 
slides icon Slides FRAAC2 [6.767 MB]  
 
FRAAC3 Status of the HOM Calculations for the BERLinPro Main Linac Cavity 278
 
  • A. Neumann, W. Anders, J. Knobloch
    HZB, Berlin, Germany
  • K. Brackebusch, T. Flisgen, T. Galek, K. Papke, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • B. Riemann, T. Weis
    DELTA, Dortmund, Germany
 
  Funding: Work supported by Federal Ministry for Research and Education BMBF under contract 05K10HRC
The Berlin Energy Recovery Linac Project (BERLinPro) is designed to develop and demonstrate CW LINAC technology and expertise required to drive next-generation Energy Recovery Linacs (ERLs). Strongly higher order mode (HOM) damped multicell 1.3 GHz cavities are required for the main linac. The cavity under study is an integrated design of the Cornell base cell with JLab HOM waveguide couplers. Modifications to the end group design have also been pursued, including the substitution of one waveguide by a HZB-modified TTF-III power coupler. In this talk the progress in HOM calculations to avoid beam-breakup instabilities for the favored cavity structure will be presented.
 
slides icon Slides FRAAC3 [15.439 MB]