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Abstract
The calculation of space charge effects in linear accel-

erators is an important prerequisite to understand the inter-
action between charged particles and the surrounding envi-
ronment. These calculations should be as efficient as possi-
ble. In this work we explore the suitability of the Crouzeix-
Raviart Finite Element Method for the computation of the
self-field of an electron bunch.

INTRODUCTION
Current and future accelerator design requires efficient

3D space charge calculations. One possible approach to
Space Charge Calculations is the Particle-in-Cell (PIC)
method, especially the Particle-Mesh method which calcu-
lates the potential in the rest-frame of the bunch.

This computation usually is done by solving Poisson’s
equation on the domain Ω, using a charge weighting f(x):

−∆ u(x) = f(x), ∀x ∈ Ω.

This equation is subject to some boundary conditions:

u(x) = gD(x), ∀x ∈ ∂ΩD,

grad u(x)·n(x) = gN (x), ∀x ∈ ∂ΩN .

These computations should be as efficient as possible.

SPACE CHARGE CALCULATIONS
We are aiming at computing the self-field of the bunch.

Denoting with D the dielectric flux and with ρ the charge
density we are estimating a solution to Gauss’ law:

div D = ρ.

Usually there are infinitely many solutions to that equa-
tion, as in fact a very large subspace of all vectorial func-
tions on the domain fulfils the equation. One can add any
divergence-free field (for example a rotational field) to a
known solution without changing the divergence, therefore
recovering additional solutions to the field equation.

For the moment we are only interested in curl-free so-
lutions of Gauss’ law, so we will only try to estimate
fields Ψ(x) which are gradients of a scalar potential u(x),
as: Ψ(x) = −grad u(x), so our equations become:

grad u(x) + Ψ(x) = 0 ∀x ∈ Ω,
−div ε(x) Ψ(x) = ρ(x) ∀x ∈ Ω.
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Removing the auxiliary vector function Ψ(x) this usually
gets shortened to the following equation:

−div ε(x) grad u(x) = ρ(x) ∀x ∈ Ω.

If the permittivity tensor ε(x) isotropic and can be replaced
by a divergence free scalar function ε(x) this becomes:

−∆u(x) = ε(x)−1ρ(x) ∀x ∈ Ω.

Our currently used numerical scheme [5] - solving Pois-
sons equation−∆u(x) = ρ(x)/ε0 in vacuum using a finite
difference scheme - seems to less than optimal for estimat-
ing the electric field.

We are loosing one order of convergence (O(h2) →
O(h1)) by the numerically computation of the electric field
from the potential u (even if using the exact derivative on
the underlying function space).

The discretized solution uh on an equidistant structured
mesh approximates the solution u with an order O(h2):

uh(x) = u(x) +O(h2).

The gradient Ψ (which corresponds to our accelerating
field) will than be approximated with an order of O(h1):

Ψh(x) = Ψ(x) +O(h1).

As we are mainly interested in the electric field we would
like to approximate it with the same order of accuracy as
the potential.

So we want to discretize and solve for the vector field
Ψ directly. The discretization used has to be curl-free and
should somehow allow for a reasonable definition of the
divergence of the field (e.g. be conformal).

Raviart-Thomas Mixed Finite Elements

One suitable ansatz-space is the lowest order Raviart-
Thomas space RT0 whose linear vector functions have fol-
lowing element-wise linear expression:

Ψh(x) = ak + bkx,

where x is in the element Tk of the triangulation T of Ω.
For the discretisation to be conformal the normal compo-

nents of the field have to be continuous at every interface
(edges in 2D or faces in 3D).
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To include this continuity constraint in the construction
of the finite element space, RT0 usually is represented
by an interface-based discretization using following defi-
nition:

ψEj (x) = σj
|Ej |
2|Tk|

(x−Pj).

Where |Tk| is the area/volume of the simplex Tk, |Ej | is the
length/area of the edge/faceEj , σj indicates the orientation
of Ej and Pj is the vertex opposite to Ej .

Mixed and Hybrid Formulation
We are now using the canonical Galerkin-approach for

Mixed Finite Elements to compute approximate solutions
for the field Ψh and the potential uh:∫

Ω

τ ·Ψh +

∫
Ω

τ ε graduh = 0 ∀τ ∈ RT0,∫
Ω

v div Ψh =

∫
Ω

v f ∀v ∈ P−1
1 .

To later remove the flux variable from the system, one
can relax the continuity requirement on the ansatz-space
and use the flux Ψ̃h from the space RT−1

0 of piecewise
linear vector and discontinuous vector functions.

One could then enforce the continuity of the normal
component of the flux on the interfaces by the use of piece-
wise discontinuous Lagrange multipliers λh ∈M−1

1 , lead-
ing to following system of equations:∫

Ω

τ̃ · Ψ̃h +

∫
Ω

τ̃ ε graduh +

∫
δΩ

λh nT · τ̃ = 0,∫
Ω

v div Ψ̃h =

∫
Ω

v f,∫
δΩ

µ nT · Ψ̃h = 0.

for all τ̃ , v and µ in RT−1
0 , P−1

1 and M−1
1 respectively.

This is equivalent to a system of linear equations such
as:  A B C

BT

CT

 Ψ̃h

uh
λh

 =

 0
fh
0


.

Because A is block-diagonal it is element-wise invert-
ible, the local Ψ̃h can easily be computed by:

Ψ̃h = −A−1(Buh + Cλh).

Using block Gauss elimination this leads to the follow-
ing system of linear equations:(

BTA−1B BTA−1C
CTA−1B CTA−1C

)(
uh
λh

)
=

(
−fh

0

)
.

This method is called static condensation. Also elimi-
nating the uh using a Schur complement one arrives at the
Crouzeix-Raviart Finite Element Method, which can also
be derived differently.

Figure 1: The ansatz-functions are only continuous at the
midpoints of interfaces

Figure 2: The space of continuous P1 is contained in PNC
1 .

Crouzeix-Raviart Non-conformal FEM
In [1] Marini suggested to directly use the locally P1 but

nonconforming finite element spaces PNC
1 , these are also

called Crouzeix-Raviart or loof finite element spaces. (This
approach can also be found in [2])

These finite elements have their degrees of freedom al-
located at the barycenters of their interfaces, rather than at
their vertices. The function space PNC

1 actually contains
the contains the space P1 of Lagrange finite elements, so it
can at least represent the continuous solutions from nodal
P1 discretizations, but it is larger.

The direct way to arrive at the Crouzeix-Raviart Finite
Element Method is to apply the usual Galerkin approach to
the nonconforming ansatz space PNC

1 directly:∑
Tk∈T

∫
Tk

ε gradh uh · gradh v =

∫
Ω

fhv ∀v ∈ PNC
1 .

With decreasing mesh size h the numerical solution uh
converges to u with O(h2). More interestingly a special
post-processing can recover a linear flux Ψh(x) of second
order accuracy O(h2) from uh(x) by locally choosing:

Ψh(x) = ε gradh uh − fh (x− xTk
)/n

on the element Tk. (with n denoting the dimension of the
problem setting and xTk

the barycenter of the simplex Tk)
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Table 1: Tabulated convergence of successive refinements
of the square domain [0, 1]× [0, 1]; ‖euh‖2 and ‖euh‖∞ are
the L2 and the maximum error of the potential uh, while
‖eΨh

‖∞ indicates the maximum error of the approximated
gradient Ψh at interface midpoints.

K t(sec) ‖euh‖2 ‖euh‖∞ ‖eΨh
‖∞

40 0.002 6.20e-2 1.20e-1 2.85e+0
176 0.004 1.49e-2 3.69e-2 1.28e+0
736 0.009 3.70e-3 9.59e-3 3.65e-1

3008 0.035 9.24e-4 2.40e-3 9.47e-2
12160 0.204 2.31e-4 6.01e-4 2.39e-2
48896 1.433 5.77e-5 1.50e-4 5.97e-3

Table 2: Tabulated convergence of successive refinements
of the cube [0, 1] × [0, 1] × [0, 1]; ‖euh‖2, ‖euh‖∞ and
‖eΨh

‖∞ retain the meaning indicated in Table 1.

K t(sec) ‖euh‖2 ‖euh‖∞ ‖eΨh
‖∞

6 0.002 1.42e+0 9.74e-1 1.44e+1
72 0.002 7.14e-1 9.20e-1 1.32e+1

672 0.006 1.49e-1 3.20e-1 6.87e+0
5760 0.044 4.02e-2 1.13e-1 2.93e+0

47616 0.597 1.07e-2 3.21e-2 8.63e-1
387072 9.373 2.74e-3 8.58e-3 2.23e-1

RESULTS
For convergence studies we have implemented

Crouzeix-Raviart Finite Elements in MATLAB [6]
for two and three dimensional simplical meshes.

For benchmarking the robustness and for accessing the
efficiency of this approach we are solving:

−∆u(x) = 3π2 sin(πx1) sin(πx2) sin(πx3) in 3D,
−∆u(x) = 2π2 sin(πx1) sin(πx2) in 2D.

The analytic solutions for the scalar potential u is given by:

u(x) = sin(πx1) sin(πx2) sin(πx3) in 3D
u(x) = sin(πx1) sin(πx2) in 2D respectively.

The convergence of the solution for successively refined
meshes (halving the minimum element diameter in each
step) is tabulated for two dimensions in table 1 and for three
dimensions in table 2.

The convergence of the potential shows the expected be-
haviour (order O(h2) implying a reduction of the error by
a factor of 4 when the step-size is halved).

The error in the approximated field distribution seems to
be dominated by the error at the boundary (especially the
corners of the domain) first - only approaching orderO(h2)
on highly refined grids.

Figure 3: Coarse grid function is not contained in fine grid

CONCLUSIONS
Though in both cases the computation time using the

conjugate gradient algorithm could be reduced by a factor
of 2 by using SSOR as a preconditioner for our current ap-
plications and the accuracy sought the computational cost
seems to be prohibitive.

The algorithm still does not have the optimal complex-
ity. Besides using an efficient preconditioner we want to
explore the use of geometric multigrid for Crouzeix Raviart
finite elements.

Using the right prolongation and restriction operators
is not completely straight-forward for the finite element
spaces involved as the successively refined function spaces
are not nested (see Figure 3). Exploring the approaches in
[4] and geometric multigrid as described in [3] seems to be
most promising at the moment.
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