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Space Charge Calculation

• Current and future accelerator design requires efficient 3D space charge
calculations. These computations should be as efficient as possible

• One possible approach is Particle-in-Cell (PIC), especially the Particle-Mesh
method which calculates the potential in the rest-frame of the bunch

• This computation usually is done by solving Poisson’s equation

−∆ u(x) = f(x), ∀x ∈ Ω.

subject to some boundary conditions:

u(x) = gD(x), ∀x ∈ ∂ΩD ,

∇u(x)·n(x) = gN(x), ∀x ∈ ∂ΩN .
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Space Charge Calculations
Revisited

• We are aiming at computing the self-field of the bunch.

• So we are estimating a solution to Gauss’ Law:

div D = ρ,

where D denotes the dielectric flux and ρ the charge density

• There are infinitely many solutions to that equation. (a very large subspace of
all vectorial functions)

• One can add any divergence-free (curl) field to a solution without changing
the divergence of the field (the divergence of a curl is zero).
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Space Charge Calculations
Revisited #2

• We are only interested in curl-free solutions of Gauss’ law

• For this we will use fields which are gradients of a scalar function.

Ψ = −grad u .

• Then our equations become

grad u(x) + Ψ(x) = 0
div ε(x)Ψ(x) = ρ(x),

• Which usually get shortened to:

−div ε(x) grad u(x) = ρ(x).

• Or if ε(x) is isotropic or constant: −∆u(x) = ε−1ρ(x).
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Space Charge Calculations
Revisited #3

• Our currently used numerical scheme (solving−∆u(x) = ρ(x)/ε0)
using a Finite Difference approximation of the Laplace operator ∆
is suboptimal for estimating the electric field.

• We are loosing one order of convergence (O(h2)→ O(h1))
by having to compute the gradient from the potential.

• The discretized solution uh on an equidistant structured mesh
approximates the solution u with an order of O(h2):

uh(x) = u(x) + O(h2).

• The gradient Ψ will than be approximated with an order of O(h1):

Ψh(x) = Ψ(x) + O(h1).
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Rethinking Space Charge
Calculations

• So lets ask: What do we actually need for our computations?
⇒ The electric field E, as it accelerates the charged particles.

• What has the Poisson-Equation originally been derived from?
⇒ Gauss’ law div D = ρ, plus some Gauging

• In our Problem setting the potential seems somewhat arbitrary - it could be
calculated as an integrated field strength from the boundary of the domain.

• So instead we want to discretize and solve for the vector field directly

• The Discretization used has to be curl-free and should somehow allow for a
sane definition of the Divergence of the field (e.g. be conformal)
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Raviart-Thomas Ansatz-Space

• One suitable ansatz space is RT0 the Raviart-Thomas space of lowest order,
whose vector functions have following element-wise linear expression:

Ψh(x) = ak + bkx,

(where x is in the element Tk of the triangulation T of the domain Ω)
• For the discretisation to be conformal the normal Components of the Field

have to be continuous at every inner Interface (Edges in 2D, Faces in 3D).

• So RT0 usually is represented by an Edge/Face-based discretization (as
shown in the next few frames) using following local representation:

ψEj
(x) = σj

|Ej |
2|Tk |

(x− Pj).

|Tk | is the area/volume of Tk , |Ej | is the length/area of the edge/face Ej , σj
indicates the orientation of Ej and Pj is the Vertex opposite to Ej .
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Raviart-Thomas Ansatz-Space –
Basis-Element ψE1
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Raviart-Thomas Ansatz-Space –
Basis-Element ψE2
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Raviart-Thomas Ansatz-Space –
Basis-Element ψE3
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Raviart-Thomas Ansatz-Space –
Constant Function
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Raviart-Thomas Ansatz-Space –
Bubble Function
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Raviart-Thomas Ansatz-Space –
Arbitrary Function
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Mixed and Hybrid Formulation

• We are now using the canonical Galerkin approach for Mixed Finite Elements
to compute approximate solutions for the field Ψh and the potential uh:∫

Ω

τ ·Ψh +

∫
Ω

τ ε grad uh = 0 ∀τ ∈ RT0∫
Ω

v divΨh =

∫
Ω

v f ∀v ∈ P−1
1

• To later remove the flux variable from the system, we will relax the continuity
requirement on the Ansatz-space and use the flux Ψ̃h from the space RT−1

0
of discontinuous linear vector functions.
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Mixed and Hybrid Formulation #2

• We than enforce the continuity of the normal component of the flux on faces
by the use of Lagrange multipliers λh ∈M−1

1 , leading to the system:∫
Ω

τ̃ · Ψ̃h +

∫
Ω

τ̃ ε grad uh +

∫
δΩ

λh nT · τ̃ = 0 ∀τ̃ ∈ RT−1
0∫

Ω

v div Ψ̃h =

∫
Ω

v f ∀v ∈ P−1
1∫

δΩ

µ nT · Ψ̃h = 0 ∀µ ∈M−1
1

• leading to following linear system of equations: A B C
BT

CT

 Ψ̃h
uh
λh

 =

 0
fh
0


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Mixed and Hybrid Formulation #3

• The Submatrix A is block-diagonal, so it is easily element-wise invertable,
so the flux Ψ̃h can be computed by:

Ψ̃h = −A−1(B uh + Cλh)

• leading to following linear system of equations:(
BTA−1B BTA−1C
CTA−1B CTA−1C

)(
uh
λh

)
=

(
−fh
0

)
This method is called static condensation.

• Eliminating the uh using a Schur complement we would arrive at a variant of
the Crouzeix-Raviart Finite Element Method⇒ which can also be derived
directly.
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The Crouzeix-Raviart Finite Element
Method

• In “An inexpensive Method for the Evaluation of the Solution of the lowest
order Raviart-Thomas Mixed Method” Marini suggested to use the P1
nonconforming finite element spaces PNC

1 .

• This PNC
1 are also called Crouzeix-Raviart or loof finite element spaces.

• These finite Elements have their degrees of freedom allocated to the
barycenters of their Edges/Faces, rather than their Vertices.

• The function space PNC
1 actually contains the space P1 of linear functions.

• So PNC
1 can at least represent the continuous solutions from nodal P1-FEM.

• As the Ansatz space is larger there is room for additional contraints,
e.g. for choosing a solution with a higher order approximation of the field.
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The Crouzeix-Raviart Finite Element
Method - Examples #1

Figure: The ansatz-functions are only continuous at the midpoints of interfaces
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The Crouzeix-Raviart Finite Element
Method - Examples #2

Figure: The space P1 of piecewise linear and continuous functions is contained in PNC
1 .
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The Crouzeix-Raviart Finite Element
Method - Examples #3

Figure: The space PNC
1 also contains discontinuous functions.
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The Crouzeix-Raviart Finite Element
Method #3

• Another (more straightforward) way to arrive at the Crouzeix-Raviart FEM
is to apply the Galerkin approach to the nonconforming Ansatz space PNC

1
directly: ∑

Tk∈T

∫
Tk

ε grad uh · grad v =

∫
Ω

fhv ∀v ∈ PNC
1 .

• With decreasing mesh-size the num. solution uh converges to u with O(h2).

• More interestingly using a special post-processing we can recover a flux Ψh
of second order accuracy O(h2) using:

Ψh(x) = ε grad uh −
fTk

n
(x− xTk ), x ∈ Tk , xTk barycenter of Tk .

• The normal component of Ψh is continuous at inter-element interfaces.
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The Crouzeix-Raviart Finite Element
Method – Numerical

Displacement uh

Figure: The Displacement is only continuous at the Midpoints of the Edges
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The Crouzeix-Raviart Finite Element
Method – Numerical Flux Ψh

Figure: Plot of vector field at element interfaces and barycenters

ICAP 2012, Warnemünde, 20. 08. 2012 C. BAHLS, U. VAN RIENEN (Universität Rostock) Methods | Crouzeix-Raviart 23 / 36



The Crouzeix-Raviart Finite Element
Method – Numerical Flux Ψh

Figure: Plot of vector field at element interfaces and barycenters

ICAP 2012, Warnemünde, 20. 08. 2012 C. BAHLS, U. VAN RIENEN (Universität Rostock) Methods | Crouzeix-Raviart 23 / 36



Results – Problem setting

• For convergence studies we implemented the Crouzeix-Raviart Finite Element
Method in MATLAB [6] for two and three dimensional simplical meshes.

• For benchmarking the robustness and the efficiency of this approach we used:

−∆u(x) = 3π2 sin(πx1) sin(πx2) sin(πx3) in 3D,
−∆u(x) = 2π2 sin(πx1) sin(πx2) in 2D.

• The analytic solutions for the scalar potential u is given by:

u(x) = sin(πx1) sin(πx2) sin(πx3) in 3D
u(x) = sin(πx1) sin(πx2) in 2D respectively.
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Results – Benchmark

• We benchmarked the convergence of the numerical solution for successively
refined meshes (halving the element-diameter in each step)

• The convergence of the potential shows the expected behaviour (order
O(h2) implying a reduction of the error by a factor of 4 with every step).

• The error in the approximated field distribution seems to be dominated by the
error at the boundary (especially at the corners of the domain) first –
only approaching order O(h2) on highly refined grids.
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Results – Convergence 2D

K t(sec) ‖euh‖2 ‖euh‖∞ ‖eΨh‖∞
40 0.002 6.20e-2 1.20e-1 2.85e+0

176 0.004 1.49e-2 3.69e-2 1.28e+0
736 0.009 3.70e-3 9.59e-3 3.65e-1

3008 0.035 9.24e-4 2.40e-3 9.47e-2
12160 0.204 2.31e-4 6.01e-4 2.39e-2
48896 1.433 5.77e-5 1.50e-4 5.97e-3

Table: Convergence of successive refinements of the square [0, 1]× [0, 1];
‖euh‖2 and ‖euh‖∞ are the L2 and the maximum error of the potential uh, while ‖eΨh‖∞
indicates the maximum error of the approximated gradient Ψh at interface midpoints.
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Results – Convergence 3D

K t(sec) ‖euh‖2 ‖euh‖∞ ‖eΨh‖∞
6 0.002 1.42e+0 9.74e-1 1.44e+1

72 0.002 7.14e-1 9.20e-1 1.32e+1
672 0.006 1.49e-1 3.20e-1 6.87e+0

5760 0.044 4.02e-2 1.13e-1 2.93e+0
47616 0.597 1.07e-2 3.21e-2 8.63e-1

387072 9.373 2.74e-3 8.58e-3 2.23e-1

Table: Convergence of successive refinements of the cube [0, 1]× [0, 1]× [0, 1]; ‖euh‖2
and ‖euh‖∞ are the L2 and the maximum error of the potential uh, while ‖eΨh‖∞
indicates the maximum error of the approximated gradient Ψh at interface midpoints.
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Results – Convergence in Domain

Figure: Plot of vector field at element interfaces and barycenters
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Results – Convergence at Domain
Boundaries

Figure: Convergence is not optimal at the corners of the domain
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Conclusions

• Though the computation time could be reduced by a factor of 2 - using SSOR
as a preconditioner - for our current applications and the accuracy sought the
computational cost seems to be prohibitive.

• Besides using an more efficient preconditioner we want to explore the use of
geometric multigrid for Crouzeix Raviart finite elements.

• Using the right prolongation and restriction operators is not completely
straight-forward for the finite element spaces involved as the successively
refined function spaces are not nested (see Figure 9).

• Exploring the approaches by Kraus, Margenov and Synka [4] and geometric
multigrid as described by Braess, Dryja and Hackbusch [3] seems to be most
promising at the moment.
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Questions and Answers

[Intentionally left empty]
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Multigrid for Crouzeix Raviart FEM –
Prolongation to Fine Grid

Figure: Continuous coarse-grid function is contained in fine grid
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Multigrid for Crouzeix Raviart FEM –
Prolongation to Fine Grid #2

Figure: Discontinuous coarse-grid function is not contained in fine grid
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