Universität Rostock

An Application of the Non-conforming Crouzeix-Raviart Finite Element Method for Efficient Space Charge Calculations

C. BAHLS, U. VAN RIENEN

University of Rostock

Rostock

Space Charge Calculation

- Current and future accelerator design requires efficient 3D space charge calculations. These computations should be as efficient as possible

Space Charge Calculation

- Current and future accelerator design requires efficient 3D space charge calculations. These computations should be as efficient as possible
- One possible approach is Particle-in-Cell (PIC),

Space Charge Calculation

- Current and future accelerator design requires efficient 3D space charge calculations. These computations should be as efficient as possible
- One possible approach is Particle-in-Cell (PIC), especially the Particle-Mesh method which calculates the potential in the rest-frame of the bunch

Space Charge Calculation

- Current and future accelerator design requires efficient 3D space charge calculations. These computations should be as efficient as possible
- One possible approach is Particle-in-Cell (PIC), especially the Particle-Mesh method which calculates the potential in the rest-frame of the bunch
- This computation usually is done by solving Poisson's equation

Space Charge Calculation

- Current and future accelerator design requires efficient 3D space charge calculations. These computations should be as efficient as possible
- One possible approach is Particle-in-Cell (PIC), especially the Particle-Mesh method which calculates the potential in the rest-frame of the bunch
- This computation usually is done by solving Poisson's equation

$$
-\Delta u(x)=f(x), \quad \forall x \in \Omega
$$

subject to some boundary conditions:

Space Charge Calculation

- Current and future accelerator design requires efficient 3D space charge calculations. These computations should be as efficient as possible
- One possible approach is Particle-in-Cell (PIC), especially the Particle-Mesh method which calculates the potential in the rest-frame of the bunch
- This computation usually is done by solving Poisson's equation

$$
-\Delta u(x)=f(x), \quad \forall x \in \Omega
$$

subject to some boundary conditions:

$$
\begin{aligned}
\mathrm{u}(x) & =g_{D}(x), & & \forall x \in \partial \Omega_{D}, \\
\nabla \mathrm{u}(x) \cdot n(x) & =g_{N}(x), & & \forall x \in \partial \Omega_{N} .
\end{aligned}
$$

Space Charge Calculations

Rostock

- We are aiming at computing the self-field of the bunch.
- So we are estimating a solution to Gauss' Law:

Space Charge Calculations

Rostock

- We are aiming at computing the self-field of the bunch.
- So we are estimating a solution to Gauss' Law:

$$
\operatorname{div} \mathbf{D}=\rho,
$$

where \mathbf{D} denotes the dielectric flux and ρ the charge density

Space Charge Calculations

Revisited

- We are aiming at computing the self-field of the bunch.
- So we are estimating a solution to Gauss' Law:

$$
\operatorname{div} \mathbf{D}=\rho,
$$

where \mathbf{D} denotes the dielectric flux and ρ the charge density

- There are infinitely many solutions to that equation. (a very large subspace of all vectorial functions)
- One can add any divergence-free (curl) field to a solution without changing the divergence of the field (the divergence of a curl is zero).

Space Charge Calculations

- We are aiming at computing the self-field of the bunch.
- So we are estimating a solution to Gauss' Law:

$$
\operatorname{div} \mathbf{D}=\rho,
$$

where \mathbf{D} denotes the dielectric flux and ρ the charge density

- There are infinitely many solutions to that equation. (a very large subspace of all vectorial functions)
- One can add any divergence-free (curl) field to a solution without changing the divergence of the field (the divergence of a curl is zero).

Space Charge Calculations

- We are aiming at computing the self-field of the bunch.
- So we are estimating a solution to Gauss' Law:

$$
\operatorname{div} \mathbf{D}=\rho,
$$

where \mathbf{D} denotes the dielectric flux and ρ the charge density

- There are infinitely many solutions to that equation. (a very large subspace of all vectorial functions)
- One can add any divergence-free (curl) field to a solution without changing the divergence of the field (the divergence of a curl is zero).

Space Charge Calculations
 Revisited \#2

- We are only interested in curl-free solutions of Gauss' law
- For this we will use fields which are gradients of a scalar function. $\boldsymbol{\Psi}=-\operatorname{grad} \mathrm{u}$
- Then our equations become

- Which usually get shortened to:

$$
\text { - div } \varepsilon^{\prime}(x) \operatorname{grad} u(x)=p(x)
$$

- Or if $\varepsilon(x)$ is isotropic or constant: $-\Delta u(x)=\varepsilon^{-1} \rho(x)$.

Space Charge Calculations

- We are only interested in curl-free solutions of Gauss' law
- For this we will use fields which are gradients of a scalar function.

$$
\boldsymbol{\Psi}=-\operatorname{grad} \mathrm{u} .
$$

- Then our equations become

- Which usually get shortened to:

$$
-\operatorname{div} \varepsilon(x) \operatorname{grad} u(x)=p(x)
$$

- Or if $\varepsilon(x)$ is isotropic or constant: $-\Delta u(x)=\varepsilon^{-1} \rho(x)$.

Space Charge Calculations

- We are only interested in curl-free solutions of Gauss' law
- For this we will use fields which are gradients of a scalar function.

$$
\boldsymbol{\Psi}=-\operatorname{grad} \mathrm{u} .
$$

- Then our equations become

$$
\begin{aligned}
\operatorname{grad} u(x)+\boldsymbol{\Psi}(x) & =\mathbf{0} \\
\operatorname{div} \varepsilon(x) \boldsymbol{\Psi}(x) & =\rho(x),
\end{aligned}
$$

- Which usually get shortened to:

$$
-\operatorname{div} \varepsilon(x) \operatorname{grad} u(x)=\rho(x)
$$

- Or if $\varepsilon(x)$ is isotropic or constant: $-\Delta u(x)=\varepsilon^{-1} \rho(x)$.
- We are only interested in curl-free solutions of Gauss' law
- For this we will use fields which are gradients of a scalar function.

$$
\boldsymbol{\Psi}=-\operatorname{grad} \mathrm{u} .
$$

- Then our equations become

$$
\begin{aligned}
\operatorname{grad} u(x)+\boldsymbol{\Psi}(x) & =\mathbf{0} \\
\operatorname{div} \varepsilon(x) \boldsymbol{\Psi}(x) & =\rho(x),
\end{aligned}
$$

- Which usually get shortened to:

$$
-\operatorname{div} \varepsilon(x) \operatorname{grad} u(x)=\rho(x)
$$

- Or if $\varepsilon(x)$ is isotropic or constant: $-\Delta u(x)=\varepsilon^{-1} \rho(x)$.
- We are only interested in curl-free solutions of Gauss' law
- For this we will use fields which are gradients of a scalar function.

$$
\boldsymbol{\Psi}=-\operatorname{grad} \mathrm{u} .
$$

- Then our equations become

$$
\begin{aligned}
\operatorname{grad} u(x)+\boldsymbol{\Psi}(x) & =\mathbf{0} \\
\operatorname{div} \varepsilon(x) \boldsymbol{\Psi}(x) & =\rho(x),
\end{aligned}
$$

- Which usually get shortened to:

$$
-\operatorname{div} \varepsilon(x) \operatorname{grad} u(x)=\rho(x)
$$

- Or if $\varepsilon(x)$ is isotropic or constant: $-\Delta u(x)=\varepsilon^{-1} \rho(x)$.

Space Charge Calculations

Revisited \#3

- Our currently used numerical scheme (solving $\left.-\Delta \mathrm{u}(x)=\rho(x) / \varepsilon_{0}\right)$ using a Finite Difference approximation of the Laplace operator Δ is suboptimal for estimating the electric field.
- We are loosing one order of convergence $\left(O\left(h^{2}\right) \rightarrow O\left(h^{1}\right)\right)$ by having to compute the gradient from the potential.
- The discretized solution up on an equidistant structured mesh approximates the solution u with an order of $O\left(h^{2}\right)$:

$$
\mathrm{u}_{h}(x)=\mathrm{u}(x)+O\left(h^{2}\right)
$$

- The gradient $\boldsymbol{\Psi}$ will than be approximated with an order of $O\left(h^{1}\right)$:

$$
\boldsymbol{w}_{h}(x)=\boldsymbol{\psi}(x)+O\left(h^{1}\right)
$$

Space Charge Calculations

Revisited \#3

- Our currently used numerical scheme (solving $\left.-\Delta \mathrm{u}(x)=\rho(x) / \varepsilon_{0}\right)$ using a Finite Difference approximation of the Laplace operator Δ is suboptimal for estimating the electric field.
- We are loosing one order of convergence $\left(O\left(h^{2}\right) \rightarrow O\left(h^{1}\right)\right)$ by having to compute the gradient from the potential.
- The discretized solution u_{h} on an equidistant structured mesh approximates the solution u with an order of $O\left(h^{2}\right)$:

$$
u_{h}(x)=u(x)+O\left(h^{2}\right)
$$

- The gradient $\boldsymbol{\Psi}$ will than be approximated with an order of $O\left(h^{1}\right)$:
\square

Space Charge Calculations

- Our currently used numerical scheme (solving $\left.-\Delta \mathrm{u}(x)=\rho(x) / \varepsilon_{0}\right)$ using a Finite Difference approximation of the Laplace operator Δ is suboptimal for estimating the electric field.
- We are loosing one order of convergence $\left(O\left(h^{2}\right) \rightarrow O\left(h^{1}\right)\right)$ by having to compute the gradient from the potential.
- The discretized solution u_{h} on an equidistant structured mesh approximates the solution u with an order of $O\left(h^{2}\right)$:

$$
\mathrm{u}_{h}(x)=\mathrm{u}(x)+O\left(h^{2}\right)
$$

- The gradient Ψ will than be approximated with an order of $O\left(h^{1}\right)$ $\boldsymbol{\Psi}_{h}(x)=\boldsymbol{\Psi}(x)+O\left(h^{1}\right)$.

Space Charge Calculations

- Our currently used numerical scheme (solving $\left.-\Delta \mathrm{u}(x)=\rho(x) / \varepsilon_{0}\right)$ using a Finite Difference approximation of the Laplace operator Δ is suboptimal for estimating the electric field.
- We are loosing one order of convergence $\left(O\left(h^{2}\right) \rightarrow O\left(h^{1}\right)\right)$ by having to compute the gradient from the potential.
- The discretized solution u_{h} on an equidistant structured mesh approximates the solution u with an order of $O\left(h^{2}\right)$:

$$
\mathrm{u}_{h}(x)=\mathrm{u}(x)+O\left(h^{2}\right)
$$

- The gradient $\boldsymbol{\Psi}$ will than be approximated with an order of $O\left(h^{1}\right)$:

$$
\boldsymbol{\Psi}_{h}(x)=\boldsymbol{\Psi}(x)+O\left(h^{1}\right) .
$$

Rethinking Space Charge

 Rostock- So lets ask: What do we actually need for our computations? \Rightarrow The electric field E, as it accelerates the charged particles.

Rethinking Space Charge

- So lets ask: What do we actually need for our computations?
\Rightarrow The electric field E, as it accelerates the charged particles.

Rethinking Space Charge

- So lets ask: What do we actually need for our computations?
\Rightarrow The electric field \mathbf{E}, as it accelerates the charged particles.
- What has the Poisson-Equation originally been derived from?

Rethinking Space Charge

- So lets ask: What do we actually need for our computations?
\Rightarrow The electric field \mathbf{E}, as it accelerates the charged particles.
- What has the Poisson-Equation originally been derived from?
\Rightarrow Gauss' law div $\mathbf{D}=\rho$, plus some Gauging

Rethinking Space Charge

- So lets ask: What do we actually need for our computations?
\Rightarrow The electric field \mathbf{E}, as it accelerates the charged particles.
- What has the Poisson-Equation originally been derived from?
\Rightarrow Gauss' law div $\mathbf{D}=\rho$, plus some Gauging

Rethinking Space Charge

- So lets ask: What do we actually need for our computations?
\Rightarrow The electric field \mathbf{E}, as it accelerates the charged particles.
- What has the Poisson-Equation originally been derived from?
\Rightarrow Gauss' law div $\mathbf{D}=\rho$, plus some Gauging
- In our Problem setting the potential seems somewhat arbitrary

Rethinking Space Charge

- So lets ask: What do we actually need for our computations?
\Rightarrow The electric field \mathbf{E}, as it accelerates the charged particles.
- What has the Poisson-Equation originally been derived from?
\Rightarrow Gauss' law div $\mathbf{D}=\rho$, plus some Gauging
- In our Problem setting the potential seems somewhat arbitrary

Rethinking Space Charge Calculations

- So lets ask: What do we actually need for our computations?
\Rightarrow The electric field \mathbf{E}, as it accelerates the charged particles.
- What has the Poisson-Equation originally been derived from?
\Rightarrow Gauss' law div $\mathbf{D}=\rho$, plus some Gauging
- In our Problem setting the potential seems somewhat arbitrary - it could be calculated as an integrated field strength from the boundary of the domain.
- So instead we want to discretize and solve for the vector field directly
- The Discretization used has to be curl-free and should somehow allow for a sane definition of the Divergence of the field (e.g. be conformal) Rostock

Rethinking Space Charge Calculations

- So lets ask: What do we actually need for our computations?
\Rightarrow The electric field \mathbf{E}, as it accelerates the charged particles.
- What has the Poisson-Equation originally been derived from?
\Rightarrow Gauss' law div $\mathbf{D}=\rho$, plus some Gauging
- In our Problem setting the potential seems somewhat arbitrary - it could be calculated as an integrated field strength from the boundary of the domain.
- So instead we want to discretize and solve for the vector field directly
- The Discretization used has to be curl-free and should somehow allow for a sane definition of the Divergence of the field (e.g. be conformal)
- So lets ask: What do we actually need for our computations?
\Rightarrow The electric field \mathbf{E}, as it accelerates the charged particles.
- What has the Poisson-Equation originally been derived from?
\Rightarrow Gauss' law div $\mathbf{D}=\rho$, plus some Gauging
- In our Problem setting the potential seems somewhat arbitrary - it could be calculated as an integrated field strength from the boundary of the domain.
- So instead we want to discretize and solve for the vector field directly
- The Discretization used has to be curl-free and should somehow allow for a sane definition of the Divergence of the field (e.g. be conformal)

Rostock

Raviart-Thomas Ansatz-Space

- One suitable ansatz space is $\mathbf{R} \mathbf{T}_{0}$ the Raviart-Thomas space of lowest order, whose vector functions have following element-wise linear expression:

$$
\boldsymbol{\Psi}_{h}(\mathbf{x})=\mathbf{a}_{k}+b_{k} \mathbf{x}
$$

(where x is in the element T_{k} of the triangulation T of the domain Ω)

Raviart-Thomas Ansatz-Space

- One suitable ansatz space is $\mathbf{R T}_{0}$ the Raviart-Thomas space of lowest order, whose vector functions have following element-wise linear expression:

$$
\boldsymbol{\Psi}_{h}(\mathbf{x})=\mathbf{a}_{k}+b_{k} \mathbf{x},
$$

(where x is in the element T_{k} of the triangulation T of the domain Ω)

Raviart-Thomas Ansatz-Space

- One suitable ansatz space is $\mathbf{R} \mathbf{T}_{0}$ the Raviart-Thomas space of lowest order, whose vector functions have following element-wise linear expression:

$$
\boldsymbol{\Psi}_{h}(\mathbf{x})=\mathbf{a}_{k}+b_{k} \mathbf{x},
$$

(where \mathbf{x} is in the element T_{k} of the triangulation \mathbf{T} of the domain Ω)

- For the discretisation to be conformal the normal Components of the Field have to be continuous at every inner Interface (Edges in 2D, Faces in 3D).
- So RT_{0} usually is represented by an Edge/Face-based discretization (as shown in the next few frames) using following local representation:

Raviart-Thomas Ansatz-Space

- One suitable ansatz space is $\mathbf{R} \mathbf{T}_{0}$ the Raviart-Thomas space of lowest order, whose vector functions have following element-wise linear expression:

$$
\boldsymbol{\Psi}_{h}(\mathbf{x})=\mathbf{a}_{k}+b_{k} \mathbf{x}
$$

(where \mathbf{x} is in the element T_{k} of the triangulation \mathbf{T} of the domain Ω)

- For the discretisation to be conformal the normal Components of the Field have to be continuous at every inner Interface (Edges in 2D, Faces in 3D).
- So RT_{0} usually is represented by an Edge/Face-based discretization (as shown in the next few frames) using following local representation:

Raviart-Thomas Ansatz-Space

- One suitable ansatz space is $\mathbf{R T}_{0}$ the Raviart-Thomas space of lowest order, whose vector functions have following element-wise linear expression:

$$
\boldsymbol{\Psi}_{h}(\mathbf{x})=\mathbf{a}_{k}+b_{k} \mathbf{x},
$$

(where \mathbf{x} is in the element T_{k} of the triangulation \mathbf{T} of the domain Ω)

- For the discretisation to be conformal the normal Components of the Field have to be continuous at every inner Interface (Edges in 2D, Faces in 3D).
- So $\mathbf{R} \mathbf{T}_{0}$ usually is represented by an Edge/Face-based discretization (as shown in the next few frames) using following local representation:

$$
\psi_{E_{j}}(\mathbf{x})=\sigma_{j} \frac{\left|E_{j}\right|}{2\left|T_{k}\right|}\left(\mathbf{x}-\mathbf{P}_{j}\right)
$$

$\left|T_{k}\right|$ is the area/volume of $T_{k},\left|E_{j}\right|$ is the length/area of the edge/face E_{j}, σ_{j}
indicates the orientation of E_{j} and P_{j} is the Vertex opposite to E_{j}.

Raviart-Thomas Ansatz-Space

- One suitable ansatz space is $\mathbf{R T}_{0}$ the Raviart-Thomas space of lowest order, whose vector functions have following element-wise linear expression:

$$
\boldsymbol{\Psi}_{h}(\mathbf{x})=\mathbf{a}_{k}+b_{k} \mathbf{x}
$$

(where \mathbf{x} is in the element T_{k} of the triangulation \mathbf{T} of the domain Ω)

- For the discretisation to be conformal the normal Components of the Field have to be continuous at every inner Interface (Edges in 2D, Faces in 3D).
- So $\mathbf{R T}_{0}$ usually is represented by an Edge/Face-based discretization (as shown in the next few frames) using following local representation:

$$
\psi_{E_{j}}(\mathbf{x})=\sigma_{j} \frac{\left|E_{j}\right|}{2\left|T_{k}\right|}\left(\mathbf{x}-\mathbf{P}_{j}\right)
$$

$\left|T_{k}\right|$ is the area/volume of $T_{k},\left|E_{j}\right|$ is the length/area of the edge/face E_{j}, σ_{j} indicates the orientation of E_{j} and \mathbf{P}_{j} is the Vertex opposite to E_{j}.

Raviart-Thomas Ansatz-Space -

Basis-Element $\psi_{E_{1}}$

Raviart-Thomas Ansatz-Space -Basis-Element $\psi_{E_{3}}$

Traditio et Innovatio

Raviart-Thomas Ansatz-Space -
 Constant Function

Raviart-Thomas Ansatz-Space -
Arbitrary Function

Mixed and Hybrid Formulation

- We are now using the canonical Galerkin approach for Mixed Finite Elements to compute approximate solutions for the field $\boldsymbol{\Psi}_{h}$ and the potential u_{h} :

$$
\begin{aligned}
\int_{\Omega} \boldsymbol{\tau} \cdot \boldsymbol{\Psi}_{h}+\int_{\Omega} \boldsymbol{\tau} \varepsilon \operatorname{grad} u_{h} & =0 \quad \forall \boldsymbol{\tau} \in \mathbf{R} \mathbf{T}_{0} \\
\int_{\Omega} v \operatorname{div} \boldsymbol{\Psi}_{h} & =\int_{\Omega} v f \quad \forall v \in \mathbf{P}_{1}^{-1}
\end{aligned}
$$

- To later remove the flux variable from the system,

Mixed and Hybrid Formulation

- We are now using the canonical Galerkin approach for Mixed Finite Elements to compute approximate solutions for the field $\boldsymbol{\Psi}_{h}$ and the potential u_{h} :

$$
\begin{aligned}
\int_{\Omega} \boldsymbol{\tau} \cdot \boldsymbol{\Psi}_{h}+\int_{\Omega} \boldsymbol{\tau} \varepsilon \operatorname{grad} u_{h} & =0 \quad \forall \boldsymbol{\tau} \in \mathbf{R}_{0} \\
\int_{\Omega} v \operatorname{div} \boldsymbol{\Psi}_{h} & =\int_{\Omega} v f \quad \forall v \in \mathbf{P}_{1}^{-1}
\end{aligned}
$$

- To later remove the flux variable from the system, we will relax the continuity requirement on the Ansatz-space and use the flux $\tilde{\Psi}_{h}$ from the space $R T_{0}{ }^{-1}$ of discontinuous linear vector functions.

Mixed and Hybrid Formulation

- We are now using the canonical Galerkin approach for Mixed Finite Elements to compute approximate solutions for the field $\boldsymbol{\Psi}_{h}$ and the potential u_{h} :

$$
\begin{aligned}
\int_{\Omega} \boldsymbol{\tau} \cdot \boldsymbol{\Psi}_{h}+\int_{\Omega} \boldsymbol{\tau} \varepsilon \operatorname{grad} u_{h} & =0 \quad \forall \boldsymbol{\tau} \in \mathbf{R} \mathbf{T}_{0} \\
\int_{\Omega} v \operatorname{div} \boldsymbol{\Psi}_{h} & =\int_{\Omega} v f \quad \forall v \in \mathbf{P}_{1}^{-1}
\end{aligned}
$$

- To later remove the flux variable from the system, we will relax the continuity requirement on the Ansatz-space

Mixed and Hybrid Formulation

- We are now using the canonical Galerkin approach for Mixed Finite Elements to compute approximate solutions for the field $\boldsymbol{\Psi}_{h}$ and the potential u_{h} :

$$
\begin{aligned}
\int_{\Omega} \boldsymbol{\tau} \cdot \boldsymbol{\Psi}_{h}+\int_{\Omega} \boldsymbol{\tau} \varepsilon \operatorname{grad} u_{h} & =0 \quad \forall \boldsymbol{\tau} \in \mathbf{R}_{0} \\
\int_{\Omega} v \operatorname{div} \boldsymbol{\Psi}_{h} & =\int_{\Omega} v f \quad \forall v \in \mathbf{P}_{1}^{-1}
\end{aligned}
$$

- To later remove the flux variable from the system, we will relax the continuity requirement on the Ansatz-space and use the flux $\tilde{\boldsymbol{\Psi}}_{h}$ from the space $\mathbf{R T}_{0}^{-1}$ of discontinuous linear vector functions.

Mixed and Hybrid Formulation \#2

- We than enforce the continuity of the normal component of the flux on faces by the use of Lagrange multipliers $\lambda_{h} \in \mathbf{M}_{1}^{-1}$, leading to the system:

$$
\left.\begin{array}{lll}
\int_{\Omega} \tilde{\tau} \cdot \tilde{\boldsymbol{\Psi}}_{h}+\int_{\Omega} \tilde{\boldsymbol{\tau}} \varepsilon \operatorname{grad} u_{h}+\int_{\delta \Omega} \lambda_{h} \mathbf{n}_{T} \cdot \tilde{\boldsymbol{\tau}} & =0 & \forall \tilde{\boldsymbol{\tau}} \in \mathbf{R}_{0}^{-1} \\
\int_{\Omega} v \operatorname{div} \tilde{\boldsymbol{\Psi}}_{h} & =\int_{\Omega} v f & \forall v \in \mathbf{P}_{1}^{-1} \\
\int_{\delta \Omega} \mu \mathbf{n}_{T} \cdot \tilde{\boldsymbol{\Psi}}_{h} & & 0
\end{array} \quad \forall \mu \in \mathbf{M}_{1}^{-1}\right)
$$

- leading to following linear system of equations:

Mixed and Hybrid Formulation \#2

- We than enforce the continuity of the normal component of the flux on faces by the use of Lagrange multipliers $\lambda_{h} \in \mathbf{M}_{1}^{-1}$, leading to the system:

$$
\left.\begin{array}{lll}
\int_{\Omega} \tilde{\boldsymbol{\tau}} \cdot \tilde{\boldsymbol{\Psi}}_{h}+\int_{\Omega} \tilde{\boldsymbol{\tau}} \varepsilon \operatorname{grad} u_{h}+\int_{\delta \Omega} \lambda_{h} \mathbf{n}_{T} \cdot \tilde{\boldsymbol{\tau}} & =0 & \forall \tilde{\boldsymbol{\tau}} \in \mathbf{R}_{0}^{-1} \\
\int_{\Omega} v \operatorname{div} \tilde{\boldsymbol{\Psi}}_{h} & =\int_{\Omega} v f & \forall v \in \mathbf{P}_{1}^{-1} \\
\int_{\delta \Omega} \mu \mathbf{n}_{T} \cdot \tilde{\boldsymbol{\Psi}}_{h} & & 0
\end{array} \quad \forall \mu \in \mathbf{M}_{1}^{-1}\right)
$$

- leading to following linear system of equations:

$$
\left(\begin{array}{lll}
\mathbf{A} & \mathbf{B} & \mathbf{C} \\
\mathbf{B}^{T} & & \\
\mathbf{C}^{T} & &
\end{array}\right)\left(\begin{array}{c}
\tilde{\mathbf{\Psi}}_{h} \\
u_{h} \\
\lambda_{h}
\end{array}\right)=\left(\begin{array}{c}
0 \\
f_{h} \\
0
\end{array}\right)
$$

Mixed and Hybrid Formulation \#3

- The Submatrix \mathbf{A} is block-diagonal, so it is easily element-wise invertable, so the flux Ψ_{h} can be computed by:

Mixed and Hybrid Formulation \#3

- The Submatrix \mathbf{A} is block-diagonal, so it is easily element-wise invertable, so the flux $\tilde{\boldsymbol{\Psi}}_{h}$ can be computed by:

$$
\tilde{\boldsymbol{\Psi}}_{h}=-\mathbf{A}^{-1}\left(\mathbf{B} u_{h}+\mathbf{C} \lambda_{h}\right)
$$

- leading to following linear system of equations:

Mixed and Hybrid Formulation \#3

- The Submatrix A is block-diagonal, so it is easily element-wise invertable, so the flux $\tilde{\boldsymbol{\Psi}}_{h}$ can be computed by:

$$
\tilde{\boldsymbol{\Psi}}_{h}=-\mathbf{A}^{-1}\left(\mathbf{B} u_{h}+\mathbf{C} \lambda_{h}\right)
$$

- leading to following linear system of equations:

$$
\left(\begin{array}{ll}
\mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{B} & \mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{C} \\
\mathbf{C}^{T} \mathbf{A}^{-1} \mathbf{B} & \mathbf{C}^{T} \mathbf{A}^{-1} \mathbf{C}
\end{array}\right)\binom{u_{h}}{\lambda_{h}}=\binom{-f_{h}}{0}
$$

This method is called static condensation.

Mixed and Hybrid Formulation \#3

- The Submatrix \mathbf{A} is block-diagonal, so it is easily element-wise invertable, so the flux $\tilde{\boldsymbol{\Psi}}_{h}$ can be computed by:

$$
\tilde{\boldsymbol{\Psi}}_{h}=-\mathbf{A}^{-1}\left(\mathbf{B} u_{h}+\mathbf{C} \lambda_{h}\right)
$$

- leading to following linear system of equations:

$$
\left(\begin{array}{ll}
\mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{B} & \mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{C} \\
\mathbf{C}^{\top} \mathbf{A}^{-1} \mathbf{B} & \mathbf{C}^{T} \mathbf{A}^{-1} \mathbf{C}
\end{array}\right)\binom{u_{h}}{\lambda_{h}}=\binom{-f_{h}}{0}
$$

This method is called static condensation.

- Eliminating the u_{h} using a Schur complement

Mixed and Hybrid Formulation \#3

- The Submatrix \mathbf{A} is block-diagonal, so it is easily element-wise invertable, so the flux $\tilde{\boldsymbol{\Psi}}_{h}$ can be computed by:

$$
\tilde{\boldsymbol{\Psi}}_{h}=-\mathbf{A}^{-1}\left(\mathbf{B} u_{h}+\mathbf{C} \lambda_{h}\right)
$$

- leading to following linear system of equations:

$$
\left(\begin{array}{ll}
\mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{B} & \mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{C} \\
\mathbf{C}^{\top} \mathbf{A}^{-1} \mathbf{B} & \mathbf{C}^{T} \mathbf{A}^{-1} \mathbf{C}
\end{array}\right)\binom{u_{h}}{\lambda_{h}}=\binom{-f_{h}}{0}
$$

This method is called static condensation.

- Eliminating the u_{h} using a Schur complement we would arrive at a variant of

Mixed and Hybrid Formulation \#3

- The Submatrix A is block-diagonal, so it is easily element-wise invertable, so the flux $\tilde{\boldsymbol{\Psi}}_{h}$ can be computed by:

$$
\tilde{\boldsymbol{\Psi}}_{h}=-\mathbf{A}^{-1}\left(\mathbf{B} u_{h}+\mathbf{C} \lambda_{h}\right)
$$

- leading to following linear system of equations:

$$
\left(\begin{array}{ll}
\mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{B} & \mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{C} \\
\mathbf{C}^{\top} \mathbf{A}^{-1} \mathbf{B} & \mathbf{C}^{T} \mathbf{A}^{-1} \mathbf{C}
\end{array}\right)\binom{u_{h}}{\lambda_{h}}=\binom{-f_{h}}{0}
$$

This method is called static condensation.

- Eliminating the u_{h} using a Schur complement we would arrive at a variant of the Crouzeix-Raviart Finite Element Method
directly.

Mixed and Hybrid Formulation \#3

- The Submatrix A is block-diagonal, so it is easily element-wise invertable, so the flux $\tilde{\boldsymbol{\Psi}}_{h}$ can be computed by:

$$
\tilde{\boldsymbol{\Psi}}_{h}=-\mathbf{A}^{-1}\left(\mathbf{B} u_{h}+\mathbf{C} \lambda_{h}\right)
$$

- leading to following linear system of equations:

$$
\left(\begin{array}{ll}
\mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{B} & \mathbf{B}^{T} \mathbf{A}^{-1} \mathbf{C} \\
\mathbf{C}^{\top} \mathbf{A}^{-1} \mathbf{B} & \mathbf{C}^{T} \mathbf{A}^{-1} \mathbf{C}
\end{array}\right)\binom{u_{h}}{\lambda_{h}}=\binom{-f_{h}}{0}
$$

This method is called static condensation.

- Eliminating the u_{h} using a Schur complement we would arrive at a variant of the Crouzeix-Raviart Finite Element Method \Rightarrow which can also be derived directly.

The Crouzeix-Raviart Finite Element Method

- In "An inexpensive Method for the Evaluation of the Solution of the lowest order Raviart-Thomas Mixed Method" Marini suggested to use the \mathbf{P}_{1} nonconforming finite element spaces $\mathbf{P}_{1}^{N C}$.
- This $\mathbf{P}_{1}^{N C}$ are also called Crouzeix-Raviart or loof finite element spaces.
- These finite Elements have their degrees of freedom allocated to the barycenters of their Edges/Faces, rather than their Vertices.
- The function space $P_{1}^{N C}$ actually contains the space P_{1} of linear functions.
- So $\mathbf{P}_{1}^{N C}$ can at least represent the continuous solutions from nodal \mathbf{P}_{1}-FEM.
- As the Ansatz space is larger there is room for additional contraints

The Crouzeix-Raviart Finite Element Method

- In "An inexpensive Method for the Evaluation of the Solution of the lowest order Raviart-Thomas Mixed Method" Marini suggested to use the \mathbf{P}_{1} nonconforming finite element spaces $\mathbf{P}_{1}^{N C}$.
- This $\mathbf{P}_{1}^{N C}$ are also called Crouzeix-Raviart or loof finite element spaces.
- These finite Elements have their degrees of freedom allocated to the barycenters of their Edges/Faces, rather than their Vertices.
- The function space $\mathbf{P}_{1}^{N C}$ actually contains the space \mathbf{P}_{1} of linear functions.
- So $P_{1}^{N C}$ can at least represent the continuous solutions from nodal $P_{1}-F E M$.
- As the Ansatz space is larger there is room for additional contraints

Rostock

The Crouzeix-Raviart Finite Element Method

- In "An inexpensive Method for the Evaluation of the Solution of the lowest order Raviart-Thomas Mixed Method" Marini suggested to use the \mathbf{P}_{1} nonconforming finite element spaces $\mathbf{P}_{1}^{N C}$.
- This $\mathbf{P}_{1}^{N C}$ are also called Crouzeix-Raviart or loof finite element spaces.
- These finite Elements have their degrees of freedom allocated to the barycenters of their Edges/Faces, rather than their Vertices.
- The function space $P_{1}^{N C}$ actually contains the space P_{1} of linear functions.
- So $\mathbf{P}_{1}^{N C}$ can at least represent the continuous solutions from nodal \mathbf{P}_{1}-FEM.
- As the Ansatz space is larger there is room for additional contraints

Rostock

The Crouzeix-Raviart Finite Element

- In "An inexpensive Method for the Evaluation of the Solution of the lowest order Raviart-Thomas Mixed Method" Marini suggested to use the \mathbf{P}_{1} nonconforming finite element spaces $\mathbf{P}_{1}^{N C}$.
- This $\mathbf{P}_{1}^{N C}$ are also called Crouzeix-Raviart or loof finite element spaces.
- These finite Elements have their degrees of freedom allocated to the barycenters of their Edges/Faces, rather than their Vertices.
- The function space $\mathbf{P}_{1}^{\mathrm{NC}}$ actually contains the space \mathbf{P}_{1} of linear functions.
- So $\mathrm{P}_{1}^{N C}$ can at least represent the continuous solutions from nodal $\mathrm{P}_{1}-F E M$. - As the Ansatz space is larger there is room for additional contraints

The Crouzeix-Raviart Finite Element

- In "An inexpensive Method for the Evaluation of the Solution of the lowest order Raviart-Thomas Mixed Method" Marini suggested to use the \mathbf{P}_{1} nonconforming finite element spaces $\mathbf{P}_{1}^{\mathrm{NC}}$.
- This $\mathbf{P}_{1}^{N C}$ are also called Crouzeix-Raviart or loof finite element spaces.
- These finite Elements have their degrees of freedom allocated to the barycenters of their Edges/Faces, rather than their Vertices.
- The function space $\mathbf{P}_{1}^{N C}$ actually contains the space \mathbf{P}_{1} of linear functions.
- So $\mathbf{P}_{1}^{N C}$ can at least represent the continuous solutions from nodal $\mathbf{P}_{1}-$ FEM.
- As the Ansatz space is larger there is room for additional contraints

The Crouzeix-Raviart Finite Element

- In "An inexpensive Method for the Evaluation of the Solution of the lowest order Raviart-Thomas Mixed Method" Marini suggested to use the \mathbf{P}_{1} nonconforming finite element spaces $\mathbf{P}_{1}^{N C}$.
- This $\mathbf{P}_{1}^{N C}$ are also called Crouzeix-Raviart or loof finite element spaces.
- These finite Elements have their degrees of freedom allocated to the barycenters of their Edges/Faces, rather than their Vertices.
- The function space $\mathbf{P}_{1}^{N C}$ actually contains the space \mathbf{P}_{1} of linear functions.
- So $\mathbf{P}_{1}^{N C}$ can at least represent the continuous solutions from nodal $\mathbf{P}_{1}-$ FEM.
- As the Ansatz space is larger there is room for additional contraints
e.g. for choosing a solution with a higher order approximation of the field.

The Crouzeix-Raviart Finite Element

- In "An inexpensive Method for the Evaluation of the Solution of the lowest order Raviart-Thomas Mixed Method" Marini suggested to use the \mathbf{P}_{1} nonconforming finite element spaces $\mathbf{P}_{1}^{N C}$.
- This $\mathbf{P}_{1}^{N C}$ are also called Crouzeix-Raviart or loof finite element spaces.
- These finite Elements have their degrees of freedom allocated to the barycenters of their Edges/Faces, rather than their Vertices.
- The function space $\mathbf{P}_{1}^{N C}$ actually contains the space \mathbf{P}_{1} of linear functions.
- So $\mathbf{P}_{1}^{N C}$ can at least represent the continuous solutions from nodal \mathbf{P}_{1}-FEM.
- As the Ansatz space is larger there is room for additional contraints, e.g. for choosing a solution with a higher order approximation of the field.

Rostock

The Crouzeix-Raviart Finite Element Method - Examples \#1

Figure: The ansatz-functions are only continuous at the midpoints of interfaces

The Crouzeix-Raviart Finite Element
 Method - Examples \#2

Figure: The space \mathbf{P}_{1} of piecewise linear and continuous functions is contained in $\mathbf{P}_{1}^{N C}$.

The Crouzeix-Raviart Finite Element Method - Examples \#3

Figure: The space $\mathbf{P}_{1}^{\mathrm{NC}}$ also contains discontinuous functions.

The Crouzeix-Raviart Finite Element Method \#3

- Another (more straightforward) way to arrive at the Crouzeix-Raviart FEM is to apply the Galerkin approach to the nonconforming Ansatz space $\mathbf{P}_{1}^{\text {NC }}$ directly:

$$
\sum_{T_{k} \in \mathbf{T}} \int_{T_{k}} \varepsilon \operatorname{grad} u_{h} \cdot \operatorname{grad} v=\int_{\Omega} f_{h} v \quad \forall v \in \mathbf{P}_{1}^{N C}
$$

- With decreasing mesh-size the num. solution u_{h} converges to u with $O\left(h^{2}\right)$.
- More interestingly using a special post-processing we can recover a flux $\boldsymbol{\Psi}_{h}$ of second order accuracy $O\left(h^{2}\right)$ using:
$\Psi_{h}(\mathrm{x})=\varepsilon \operatorname{grad} \mathrm{u}_{h}-\frac{T_{k}}{n}\left(\mathrm{x}-\mathrm{x}_{T_{k}}\right), \quad \mathrm{x} \in T_{k}, \mathrm{x}_{T_{k}}$ barycenter of T_{k}
- The normal component of Ψ_{h} is continuous at inter-element interfaces.

The Crouzeix-Raviart Finite Element Method \#3

- Another (more straightforward) way to arrive at the Crouzeix-Raviart FEM is to apply the Galerkin approach to the nonconforming Ansatz space $\mathbf{P}_{1}^{\text {NC }}$ directly:

$$
\sum_{T_{k} \in \mathbf{T}} \int_{T_{k}} \varepsilon \operatorname{grad} u_{h} \cdot \operatorname{grad} v=\int_{\Omega} f_{h} v \quad \forall v \in \mathbf{P}_{1}^{N C} .
$$

- With decreasing mesh-size the num. solution u_{h} converges to u with $O\left(h^{2}\right)$.
- More interestingly using a special post-processing we can recover a flux Ψ_{h} of second order accuracy $O\left(h^{2}\right)$ using:
$\Psi_{h}(x)=\varepsilon$ gradu $u_{h}-\frac{f_{T_{k}}}{n}\left(x-x_{T_{k}}\right)$, $\mathbf{x} \in T_{k}, \mathbf{x}_{T_{k}}$ barycenter of T_{k} - The normal component of Ψ_{h} is continuous at inter-alement interfaces.

The Crouzeix-Raviart Finite Element Method \#3

- Another (more straightforward) way to arrive at the Crouzeix-Raviart FEM is to apply the Galerkin approach to the nonconforming Ansatz space $\mathbf{P}_{1}^{\text {NC }}$ directly:

$$
\sum_{T_{k} \in \mathbf{T}} \int_{T_{k}} \varepsilon \operatorname{grad} u_{h} \cdot \operatorname{grad} v=\int_{\Omega} f_{h} v \quad \forall v \in \mathbf{P}_{1}^{N C}
$$

- With decreasing mesh-size the num. solution u_{h} converges to u with $O\left(h^{2}\right)$.
- More interestingly using a special post-processing we can recover a flux $\boldsymbol{\Psi}_{h}$ of second order accuracy $O\left(h^{2}\right)$ using:

$$
\boldsymbol{\Psi}_{h}(\mathbf{x})=\varepsilon \operatorname{grad}_{u_{h}}-\frac{f_{T_{k}}}{n}\left(\mathbf{x}-\mathbf{x}_{T_{k}}\right), \quad \mathbf{x} \in T_{k}, \mathbf{x}_{T_{k}} \text { barycenter of } T_{k} .
$$

The Crouzeix-Raviart Finite Element

- Another (more straightforward) way to arrive at the Crouzeix-Raviart FEM is to apply the Galerkin approach to the nonconforming Ansatz space $\mathbf{P}_{1}^{\text {NC }}$ directly:

$$
\sum_{T_{k} \in \mathbf{T}} \int_{T_{k}} \varepsilon \operatorname{grad} u_{h} \cdot \operatorname{grad} v=\int_{\Omega} f_{h} v \quad \forall v \in \mathbf{P}_{1}^{N C} .
$$

- With decreasing mesh-size the num. solution u_{h} converges to u with $O\left(h^{2}\right)$.
- More interestingly using a special post-processing we can recover a flux $\boldsymbol{\Psi}_{h}$ of second order accuracy $O\left(h^{2}\right)$ using:
$\boldsymbol{\Psi}_{h}(\mathbf{x})=\varepsilon \operatorname{grad}_{\mathrm{u}_{h}}-\frac{f_{T_{k}}}{n}\left(\mathbf{x}-\mathbf{x}_{T_{k}}\right), \quad \mathbf{x} \in T_{k}, \mathbf{x}_{T_{k}}$ barycenter of T_{k}.
- The normal component of $\boldsymbol{\Psi}_{h}$ is continuous at inter-element interfaces.

Figure: The Displacement is only continuous at the Midpoints of the Edges

The Crouzeix-Raviart Finite Element Method - Numerical Displacement u_{h}

Figure: The Displacement is only continuous at the Midpoints of the Edges

The Crouzeix-Raviart Finite Element Method - Numerical Flux $\boldsymbol{\Psi}_{h}$

Figure: Plot of vector field at element interfaces and barycenters

The Crouzeix-Raviart Finite Element Method - Numerical Flux $\boldsymbol{\Psi}_{h}$

Figure: Plot of vector field at element interfaces and barycenters

Results - Problem setting

- For convergence studies we implemented the Crouzeix-Raviart Finite Element Method in MATLAB [6] for two and three dimensional simplical meshes.
- For benchmarking the robustness and the efficiency of this approach we used:

- The analytic solutions for the scalar potential u is given by:

Results - Problem setting

- For convergence studies we implemented the Crouzeix-Raviart Finite Element Method in MATLAB [6] for two and three dimensional simplical meshes.
- For benchmarking the robustness and the efficiency of this approach we used:

$$
\begin{aligned}
-\Delta \mathrm{u}(x) & =3 \pi^{2} \sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \sin \left(\pi x_{3}\right) \text { in } 3 \mathrm{D}, \\
-\Delta \mathrm{u}(x) & =2 \pi^{2} \sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \text { in } 2 \mathrm{D} .
\end{aligned}
$$

- The analytic solutions for the scalar potential u is given by:

Results - Problem setting

- For convergence studies we implemented the Crouzeix-Raviart Finite Element Method in MATLAB [6] for two and three dimensional simplical meshes.
- For benchmarking the robustness and the efficiency of this approach we used:

$$
\begin{aligned}
-\Delta \mathrm{u}(x) & =3 \pi^{2} \sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \sin \left(\pi x_{3}\right) \text { in } 3 \mathrm{D}, \\
-\Delta \mathrm{u}(x) & =2 \pi^{2} \sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \text { in } 2 \mathrm{D} .
\end{aligned}
$$

- The analytic solutions for the scalar potential u is given by:

$$
\begin{aligned}
& \mathrm{u}(x)=\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \sin \left(\pi x_{3}\right) \quad \text { in 3D } \\
& \mathrm{u}(x)=\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \quad \text { in 2D respectively. }
\end{aligned}
$$

Results - Benchmark

- We benchmarked the convergence of the numerical solution for successively refined meshes (halving the element-diameter in each step)

Results - Benchmark

- We benchmarked the convergence of the numerical solution for successively refined meshes (halving the element-diameter in each step)
- The convergence of the potential shows the expected behaviour

Results - Benchmark

- We benchmarked the convergence of the numerical solution for successively refined meshes (halving the element-diameter in each step)
- The convergence of the potential shows the expected behaviour $O\left(h^{2}\right)$ implying a reduction of the error by a factor of 4 with every step).

Results - Benchmark

- We benchmarked the convergence of the numerical solution for successively refined meshes (halving the element-diameter in each step)
- The convergence of the potential shows the expected behaviour (order $O\left(h^{2}\right)$ implying a reduction of the error by a factor of 4 with every step).
- The error in the approximated field distribution seems to be dominated by the error at the boundary (especially at the corners of the domain) first

Results - Benchmark

- We benchmarked the convergence of the numerical solution for successively refined meshes (halving the element-diameter in each step)
- The convergence of the potential shows the expected behaviour (order $O\left(h^{2}\right)$ implying a reduction of the error by a factor of 4 with every step).
- The error in the approximated field distribution seems to be dominated by the error at the boundary (especially at the corners of the domain) first
only approaching order $O\left(h^{2}\right)$ on highly refined grids.

Results - Benchmark

- We benchmarked the convergence of the numerical solution for successively refined meshes (halving the element-diameter in each step)
- The convergence of the potential shows the expected behaviour (order $O\left(h^{2}\right)$ implying a reduction of the error by a factor of 4 with every step).
- The error in the approximated field distribution seems to be dominated by the error at the boundary (especially at the corners of the domain) first only approaching order $O\left(h^{2}\right)$ on highly refined grids.

Results - Convergence 2D

K	$\mathrm{t}(\mathrm{sec})$	$\left\\|e_{\mathrm{u}_{h}}\right\\|_{2}$	$\left\\|e_{\mathrm{u}_{h}}\right\\|_{\infty}$	$\left\\|e_{\boldsymbol{\psi}_{h}}\right\\|_{\infty}$
40	0.002	$6.20 \mathrm{e}-2$	$1.20 \mathrm{e}-1$	$2.85 \mathrm{e}+0$
176	0.004	$1.49 \mathrm{e}-2$	$3.69 \mathrm{e}-2$	$1.28 \mathrm{e}+0$
736	0.009	$3.70 \mathrm{e}-3$	$9.59 \mathrm{e}-3$	$3.65 \mathrm{e}-1$
3008	0.035	$9.24 \mathrm{e}-4$	$2.40 \mathrm{e}-3$	$9.47 \mathrm{e}-2$
12160	0.204	$2.31 \mathrm{e}-4$	$6.01 \mathrm{e}-4$	$2.39 \mathrm{e}-2$
48896	1.433	$5.77 \mathrm{e}-5$	$1.50 \mathrm{e}-4$	$5.97 \mathrm{e}-3$

Table: Convergence of successive refinements of the square $[0,1] \times[0,1]$; $\left\|e_{u_{h}}\right\|_{2}$ and $\left\|e_{u_{h}}\right\|_{\infty}$ are the L_{2} and the maximum error of the potential u_{h}, while $\left\|e_{\psi_{h}}\right\|_{\infty}$ indicates the maximum error of the approximated gradient $\boldsymbol{\Psi}_{h}$ at interface midpoints.

Results - Convergence 3D

K	$\mathrm{t}(\mathrm{sec})$	$\left\\|e_{\mathrm{u}_{h}}\right\\|_{2}$	$\left\\|e_{\mathrm{u}_{h}}\right\\|_{\infty}$	$\left\\|e_{\boldsymbol{\psi}_{h}}\right\\|_{\infty}$
6	0.002	$1.42 \mathrm{e}+0$	$9.74 \mathrm{e}-1$	$1.44 \mathrm{e}+1$
72	0.002	$7.14 \mathrm{e}-1$	$9.20 \mathrm{e}-1$	$1.32 \mathrm{e}+1$
672	0.006	$1.49 \mathrm{e}-1$	$3.20 \mathrm{e}-1$	$6.87 \mathrm{e}+0$
5760	0.044	$4.02 \mathrm{e}-2$	$1.13 \mathrm{e}-1$	$2.93 \mathrm{e}+0$
47616	0.597	$1.07 \mathrm{e}-2$	$3.21 \mathrm{e}-2$	$8.63 \mathrm{e}-1$
387072	9.373	$2.74 \mathrm{e}-3$	$8.58 \mathrm{e}-3$	$2.23 \mathrm{e}-1$

Table: Convergence of successive refinements of the cube $[0,1] \times[0,1] \times[0,1] ;\left\|e_{\mathrm{u}_{\mathrm{h}}}\right\|_{2}$ and $\left\|e_{u_{h}}\right\|_{\infty}$ are the L_{2} and the maximum error of the potential u_{h}, while $\left\|e_{w_{h}}\right\|_{\infty}$ indicates the maximum error of the approximated gradient $\boldsymbol{\Psi}_{h}$ at interface midpoints.

Figure: Plot of vector field at element interfaces and barycenters

Results - Convergence at Domain Boundaries

Figure: Convergence is not optimal at the corners of the domain

- Though the computation time could be reduced by a factor of 2 - using SSOR as a preconditioner - for our current applications and the accuracy sought the computational cost seems to be prohibitive.

Conclusions

- Though the computation time could be reduced by a factor of 2 - using SSOR as a preconditioner - for our current applications and the accuracy sought the computational cost seems to be prohibitive.
- Besides using an more efficient preconditioner we want to explore the use of geometric multigrid for Crouzeix Raviart finite elements.
- Using the right prolongation and restriction operators is not completely straight-forward for the finite element spaces involved as the successively refined function spaces are not nested (see Figure 9).
- Exploring the approaches by Kraus, Margenov and Synka [4] and geometric multigrid as described by Braess, Dryja and Hackbusch [3] seems to be most promising at the moment.

Conclusions

- Though the computation time could be reduced by a factor of 2 - using SSOR as a preconditioner - for our current applications and the accuracy sought the computational cost seems to be prohibitive.
- Besides using an more efficient preconditioner we want to explore the use of geometric multigrid for Crouzeix Raviart finite elements.
- Using the right prolongation and restriction operators is not completely straight-forward for the finite element spaces involved as the successively refined function spaces are not nested (see Figure 9).
- Exploring the approaches by Kraus, Margenov and Synka [4] and geometric multigrid as described by Braess, Dryja and Hackbusch [3] seems to be most promising at the moment.

Conclusions

- Though the computation time could be reduced by a factor of 2 - using SSOR as a preconditioner - for our current applications and the accuracy sought the computational cost seems to be prohibitive.
- Besides using an more efficient preconditioner we want to explore the use of geometric multigrid for Crouzeix Raviart finite elements.
- Using the right prolongation and restriction operators is not completely straight-forward for the finite element spaces involved as the successively refined function spaces are not nested (see Figure 9).
- Exploring the approaches by Kraus, Margenov and Synka [4] and geometric multigrid as described by Braess, Dryja and Hackbusch [3] seems to be most promising at the moment.

Conclusions

- Though the computation time could be reduced by a factor of 2 - using SSOR as a preconditioner - for our current applications and the accuracy sought the computational cost seems to be prohibitive.
- Besides using an more efficient preconditioner we want to explore the use of geometric multigrid for Crouzeix Raviart finite elements.
- Using the right prolongation and restriction operators is not completely straight-forward for the finite element spaces involved as the successively refined function spaces are not nested (see Figure 9).
- Exploring the approaches by Kraus, Margenov and Synka [4] and geometric multigrid as described by Braess, Dryja and Hackbusch [3] seems to be most promising at the moment.

[Intentionally left empty]

Universität Rostock

Traditio et Innovatio

Multigrid for Crouzeix Raviart FEM Prolongation to Fine Grid

Figure: Continuous coarse-grid function is contained in fine grid

Universität Rostock

Traditio et Innovatio

Multigrid for Crouzeix Raviart FEM Prolongation to Fine Grid \#2

Figure: Discontinuous coarse-grid function is not contained in fine grid

Bibliography I

E. L. Marini.

An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method.

SIAM Journal on Numerical Analysis, 22(3):493-496, 1985.
D. N. Arnold and F. Brezzi.

Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates.

Math. Anal. Numér, 19(1), 1985.

軎 D. Braess, M. Dryja, and W. Hackbusch.
A multigrid method for nonconforming FE-discretisations with application to non-matching grids.

Computing, 63(1):1-25, July 1999.
圊 J. Kraus, S. Margenov, and J. Synka.
On the multilevel preconditioning of Crouzeix-Raviart elliptic problems.
Numerical Linear Algebra with Applications, 15(5):395-416, 2008.

R G. Pöplau and U. van Rienen.
An efficient 3 D space charge routine with self-adaptive discretization.
In Proceedings of ICAP 2009 (Proceedings of the 10th International Computational Accelerator Physics Conference), San Francisco, USA, pages 23-26, 2010.
© MATLAB.
Version 7.10 .0 (R2010a).
The MathWorks Inc.

