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Overview 

 Introduction 

 Perturbation Theory 

 Basics 

 Introduction of two different Perturbative Methods 

 Analytical Proof of Principle 

 Numerical Implementation 

 Results 

 Conclusion & Outlook 
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Introduction 
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Geometrical Perturbations of a Cavity 

 Geometrical shape of a cavity determines 

 Eigenmodes inside the cavity 

 Cavity characteristics 

 Perturbation of the cavity shape changes its characteristics 
 

 Forms of perturbations: 

 Desired modification 

     Optimization of cavity characteristics (Eacc/Epeak ,Q,…) 
 

 Undesired perturbation: Deviation of desired geometry due to 
manufacturing tolerances and operational demands 

      Impairment of accelerating performance (-Mode) 

      Beam deflection  / wakefield excitation 
  

 Need to assess perturbation effects 
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Motivation for Using Perturbation Theory 

 Parameter studies to investigate perturbation effects 

 Computation of eigenmodes for numerous different cavity geometries 

 

 Common numerical solvers: 

 Perform a full computation even if geometry is only slightly changed 

  Computationally extensive and inefficient 
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Eigenmode Computation Geometry 1 Eigenmodes 1 

Eigenmode Computation Geometry 2 Eigenmodes 2 
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Motivation for Using Perturbation Theory 

 Perturbative methods: 

 Perform full eigenmode computation solely for one geometry 

 Derive eigenmodes of every other geometry from these eigenmodes 

   Significant reduction of computational effort 
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Basics of Perturbation Theory 
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Orthogonality of Eigenmodes 

Cross section of cylindrical cavity 

The integral of the product of the stationary fields of two different 

modes over the complete cavity volume is always zero 

Ez of TM01 mode Ez of TM11 mode 
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Orthogonality of Eigenmodes  Series Expansion 

Fields of unperturbed eigenmodes 

= 

System of mutually orthogonal functions 

Field pattern of perturbed eigenmodes: 

Expansion as a series of the unperturbed modes 

Condition: Perturbed volume has to be part of unperturbed volume 



28.08.2012 © 2012  UNIVERSITY OF ROSTOCK | Institute for General Electrical Engineering               K. Brackebusch  

How to determine the perturbed eigenmodes 

 Key aspect: 

 Interaction of each unperturbed mode with every other unperturbed 
mode inside the volume ΔV that is removed by the perturbation 
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Basic Operations of Perturbation Theory  
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Computation of 

unperturbed modes 

Computation of volume 

integral matrices 

Computation of 

interaction term matrix 

Arithmetic operations 
(e.g. eigensystem computation) 

Perturbed eigenmodes 
(Frequencies, weighting factors 

for series expansion) 

Method 1: GST 
Generalisation of Slater‘s Theorem 

Method 2 

Analytical computation or 

Use of numerical eigenmode solver 
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Method 1: GST  
Generalisation of Slater‘s Theorem 

Method 2 

Analytical computation or 

Use of numerical eigenmode solver 

 

 

 

 

Operations 1 Operations 2 
(more complex) 

Perturbed eigenmodes Perturbed eigenmodes 
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Proof of Principle I 

 Analytically evaluable cavity shape 

 Use of analytically computed unperturbed and eigenmodes 

  Any desired number of unperturbed modes usable for series expansion 

  Very high precision for implementation 

  Very low effort 

 

 

 

 Computation example 

 cylindrical cavity 

 subject to radial perturbation of 5% 

 Investigation of TM0n0 modes (n: radial mode index) 
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Proof of Principle II:  

Fields coincide 

very well 

 Using only a small number of unperturbed modes TM0.1.0 to TM0.54.0  

 Relative error of perturbed frequencies < 10-3 

 Longitudinal electric field along the radius r 
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Deviation is less 

than 10-3 of 

maximal value 

Proof of Principle II:  

 Using only a small number of unperturbed modes TM0.1.0 to TM0.54.0  

 Relative error of perturbed frequencies < 10-3 

 Longitudinal electric field along the radius r 
 

 

 
 

Very accurate results 
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Numerical Implementation 

15 



28.08.2012 © 2012  UNIVERSITY OF ROSTOCK | Institute for General Electrical Engineering               K. Brackebusch  

Basic Operations of Numerical Implementation 

 Computation of unperturbed eigenmodes 

 Unperturbed frequencies and fields 

 

 Computation of volume integrals  

 

 Computation of interaction terms 

  

 Evaluation of arithmetic operations 

 Perturbed frequencies and weighting factors 

 

 Series expansion in terms of unperturbed fields 

 Perturbed fields 
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• Simple & Low effort 

• Equal for analytical and 

  numerical implementation 

 Computation of unperturbed eigenmodes 

 Unperturbed frequencies and fields 

 

 Computation of volume integrals 

  

 Computation of interaction terms 

  

 Evaluation of arithmetic operations 

 Perturbed frequencies and weighting factors 

 

 Series expansion in terms of unperturbed fields 

 Perturbed fields 
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Numerical computation of unperturbed eigenmodes 

 Result relevant parameters 

 Mesh density 

 Exactness of boundary discretization 

 Accuracy of unperturbed frequencies and fields 

 

 Depends on 

 Cavity geometry  

 Frequency range / minimal wavelength 

 Computation method 

17 

Perturbed 

Geometry 
Accuracy of boundary fields 

very important 



 Dual grid with hexahedral cells and PBA (partially filled cells) 

 Inner fields: Good approximation 

 Fields near to the boundary: abrupt transition to zero 
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FIT*-based Eigenmode-Computation   (CST-MicrowaveStudio©) 
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* Finite Integration Theory 

Magnetic field along the radius (R=100 mm) 



 Dual grid with hexahedral cells and PBA (partially filled cells) 

 Inner fields: Good approximation 

 Fields near to the boundary: abrupt transition to zero 

 Boundary fields are of crucial importance for volume integrals 

28.08.2012 © 2012  UNIVERSITY OF ROSTOCK | Institute for General Electrical Engineering               K. Brackebusch  

FIT*-based Eigenmode-Computation   (CST-MicrowaveStudio©) 
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* Finite Integration Theory 

Magnetic field along the radius (R=100 mm) 

Defective boundary range 
must be as small as possible 

FIT not appropriate for 
Perturbation Theory 
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FEM*-based Eigenmode-Computation  (CST-MicrowaveStudio©) 
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* Finite Elements Method 

 Tetraeder-Grid with Curved Elements 

 Better approximation of boundary curve 

 No oscillations 
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FEM*-based Eigenmode-Computation  (CST-MicrowaveStudio©) 
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* Finite Elements Method 

FEM: 99.9997 mm FIT: 99.93 mm 

 Tetraeder-Grid with Curved Elements 

 Better approximation of boundary curve 

 No oscillations 

 Defective boundary range essentially smaller 

  Especially for elliptical cavities more accurate results 

Defective boundary range 

FEM:  0.3 µm 

FIT:     70 µm 
FEM more suitable 
for boundary fields 
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Extrapolation of Boundary Field Values 

 After computation of unperturbed eigenmodes (CST MWS) 

 Fields have to be exported as discrete field points 

 But still: Field points inside defective boundary range 

 Incorrect field values of zero 

 Impairment of volume integrals 

  

 Simple but effective solution 

Extrapolation of defective field value from set 

of correct values along surface normal vector 

 1D interpolation 
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● Interpolation values 

● Extrapolated value 
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Computation of Volume Integrals: Approach 1 
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Analytical 

Absolute error of field along radius: 

▬ Interpolation (degree of 1) 

▬ Interpolation (degree of 3) 

Cylindrical cavity 

Ez-Field of TM232 

Interpolation 

 Interpolation of discrete field data 

  Continuous 3D IP-functions for integration 

 

 

 For very accurate results 

• IP-functions with polynomial degree > 1 needed 



 Interpolation of discrete field data 

  Continuous 3D IP-functions for integration 

 

 

 For very accurate results 

• IP-functions with polynomial degree > 1 needed 

• Only realizable on a structured grid 

 Very large number of field points 
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Computation of Volume Integrals: Approach 1 
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Analytical 

Cylindrical cavity 

Ez-Field of TM232 

Interpolation 

 Enormous effort 

 Export of field values 

 3D Interpolation of degree > 1 

Radial perturbation 
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Computation of Volume Integrals: Approach 2 

 Numerical integration: Summation of products of discrete fields and 
discrete volume  

 

 

 Partitioning of ΔV into volume elements 

 Commonly used cubic elements: very inaccurate for boundary elements 

 Solution: Analytical volume elements 

 If boundary of ΔV and element intersect: analytical computation of volume 
and center 
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Cubic elements (analytical) 

Analytical computed 

volume element 

Cubic elements 
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Computation of Volume Integrals: Approach 2 

 Numerical integration: Summation of products of discrete fields and 
discrete volume  

 

 

 Partitioning of ΔV into volume elements 

 Commonly used cubic elements: very inaccurate for boundary elements 

 Solution: Analytical volume elements 

 If boundary of ΔV and element intersect: analytical computation of volume 
and center 
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Cubic elements (analytical) Cylindrical elements (analytical) 

• Precise discretization 

• Low effort 
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Computation of perturbed fields 

 Final arithmetic operations yield 

 Perturbed frequencies 

 Weighting factors for series expansion 

 

 Series expansion of perturbed fields 

 

 

 

 CST MWS post processing: Summation of unperturbed fields multiplied 
by weighting factors 

 

 External program: Export of unperturbed fields 

  Summation of discrete field values 
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Results 
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Numerical computation of unperturbed eigenmodes 

 Computation example 

 Cylindrical cavity (R=100 mm, L=100 mm, fundamental mode: 1.15 GHz) 

 Investigation of TM2n2 modes subject to radial perturbations  

 

 Eigenmodes computable in a very large frequency range 

 Up to 35.71 GHz 
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● TM2.1.2 to TM2.23.2 
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Numerical computation of unperturbed eigenmodes 

 Computation example 

 Cylindrical cavity (R=100 mm, L=100 mm, fundamental mode: 1.15 GHz) 

 Investigation of TM2n2 modes subject to radial perturbations  

 

 Eigenmodes computable in a very large frequency range 

 Up to 35.71 GHz 

 Frequency error < 1.6∙10-4 
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Very accurate in a 
large frequency range 
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Computation of Volume Integrals: Size of elements 
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 Necessary step size depends on 

• Frequency / wave length 

• Extent of perturbation 

Step size 

Relative deviation of volume integrals 

▬ Cubic elements 

▪▪▪ Cylindrical elements 

ΔR/R ΔR Step size # elements 

1 % 1 mm 0.25 mm 500000 

5 % 5 mm 0.5 mm 306000 

20 % 20 mm 1 mm 150000 

Radial perturbation 

Reasonable number of mesh cells 



 ITE (electric fields) : Very accurate 

• Relative error mainly < 2∙10-3 

• Only for small values of ITE larger error 
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Computation of Volume Integrals: Accuracy 
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Radial perturbation:  5% (5 mm) 

Step size: 0.5 mm 

Absolute values Relative deviation 



 ITE (electric fields) : Very accurate 

• Relative error mainly < 2∙10-3 

• Only for small values of ITE larger error 

 

 ITH (magnetic fields) : Very accurate for limited frequency range 

• Up to 21 GHz (13th mode): Relative error < 7∙10-3 

• Increases up to 3∙10-2 for frequencies 
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Computation of Volume Integrals: Accuracy 
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Radial perturbation:  5% (5 mm) 

Step size: 0.5 mm 

Absolute values Relative deviation 

 ITE: very accurate 

 ITH: accurate 
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Interaction Terms & Final Results 
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 Accuracy depends on perturbative method 

 

 

 

Relative deviation between numerical 

and analytical implementation 

Method 1 Method 2 

Same relative error as ITE 

Very accurate 
μ/ε ≈ 105 

Absolute error of ITH scaled up 

Depending on ratio of  ωi∙ε∙ITE(ik)  to  ωk∙μ∙ITH(ik)  

Error of resulting interaction term may increase 

 Error of perturbed frequencies 

• Method 2: Extremely small 

• Method 1: Increased but still very small 
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Conclusion & Outlook 
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Conclusion 

 Perturbation Theory: Efficient method to compute perturbed 

eigenmodes of cavities in the context of parameter studies 

 Numerical implementation 

 Feasible with commonly used standard software 

 (Very) accurate results over a large frequency range 

 Reasonable computational effort 

 Differences in error propagation depending on perturbative method 

  Application to arbitrary cavity geometries 

 

 

 

 Application to real cavities (elliptical cavities) 

 Improvement of algorithm of perturbative methods 
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Outlook 
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