

Traditio et Innovatio

Implementational Aspects of Eigenmode Computation based on Perturbation Theory

<u>Korinna Brackebusch</u> Prof. Ursula van Rienen University of Rostock

20.08.2012

11th International Computational Accelerator Physics Conference Rostock Warnemünde

Work supported by Federal Ministry for Research and Education BMBF (Contracts 05H09HR5 and 05K10HRC)

Overview

- Introduction
- Perturbation Theory
 - Basics
 - Introduction of two different Perturbative Methods
 - Analytical Proof of Principle
- Numerical Implementation
- Results
- Conclusion & Outlook

Introduction

Geometrical Perturbations of a Cavity

- Geometrical shape of a cavity determines
 - Eigenmodes inside the cavity
 - Cavity characteristics
- \rightarrow Perturbation of the cavity shape changes its characteristics
- Forms of perturbations:
 - Desired modification
 - → Optimization of cavity characteristics (E_{acc}/E_{peak} ,Q,...)
 - Undesired perturbation: Deviation of desired geometry due to manufacturing tolerances and operational demands
 - \rightarrow Impairment of accelerating performance (π -Mode)
 - \rightarrow Beam deflection / wakefield excitation

Need to assess perturbation effects

Motivation for Using Perturbation Theory

- Parameter studies to investigate perturbation effects
- \rightarrow Computation of eigenmodes for <u>numerous</u> different cavity geometries
- Common numerical solvers: Perform a <u>full computation</u> even if geometry is only slightly changed
 Computationally extensive and inefficient

Traditio et Innovatio

Motivation for Using Perturbation Theory

- Perturbative methods:
 - Perform full eigenmode computation solely for one geometry
 - Derive eigenmodes of every other geometry from these eigenmodes
 - \rightarrow Significant reduction of computational effort

Basics of Perturbation Theory

Orthogonality of Eigenmodes

The integral of the product of the stationary fields of two different modes over the complete cavity volume is always zero

$$\frac{\epsilon}{2U_{i}} \iiint \mathbf{E}_{i}(\mathbf{r}) \cdot \mathbf{E}_{k}(\mathbf{r}) \, dV = \delta_{ik} = \begin{cases} 1 & i = k \\ 0 & i \neq k \\ \frac{\mu}{2U_{i}} \iiint \mathbf{H}_{i}(\mathbf{r}) \cdot \mathbf{H}_{k}(\mathbf{r}) \, dV = \delta_{ik} = \begin{cases} 1 & i = k \\ 0 & i \neq k \\ 0 & i \neq k \end{cases}$$

Cross section of cylindrical cavity E_z of TM_{01} and TM_{11} mode

V : Volume of the unperturbed cavity

 $U_{\rm i}$: Energy stored in unperturbed mode i

Orthogonality of Eigenmodes \rightarrow Series Expansion

Field pattern of perturbed eigenmodes: Expansion as a <u>series of the unperturbed modes</u>

$$egin{array}{rcl} \widetilde{\mathbf{E}}_{\mathrm{i}}(\mathbf{r}) &=& \displaystyle{\sum_{\mathrm{k}=1}^{N} e_{\mathrm{ik}} \cdot \mathbf{E}_{\mathrm{k}}(\mathbf{r})} \ \widetilde{\mathbf{H}}_{\mathrm{i}}(\mathbf{r}) &=& \displaystyle{\sum_{\mathrm{k}=1}^{N} h_{\mathrm{ik}} \cdot \mathbf{H}_{\mathrm{k}}(\mathbf{r})} \end{array}$$

Condition: Perturbed volume has to be part of unperturbed volume

How to determine the perturbed eigenmodes

• Key aspect:

Interaction of each unperturbed mode with every other unperturbed mode inside the volume ΔV that is <u>removed</u> by the perturbation

Unperturbed

Geometry

Perturbed

Geometry

$$IT_{E(ik)} = \iiint_{\Delta V} \mathbf{E}_{i}(\mathbf{r}) \cdot \mathbf{E}_{k}(\mathbf{r}) \, dV$$
$$IT_{H(ik)} = \iiint_{\Delta V} \mathbf{H}_{i}(\mathbf{r}) \cdot \mathbf{H}_{k}(\mathbf{r}) \, dV$$
$$\mathbf{Volume integral}$$
$$matrices$$
$$IT_{E}, IT_{H}$$

Basic Operations of Perturbation TheoryMethod 1: GST
Generalisation of Slater's TheoremMethod 2Computation of
unperturbed modesAnalytical computation or
Use of numerical eigenmode solver

Computation of volume integral matrices

Computation of interaction term matrix

Arithmetic operations (e.g. eigensystem computation)

Perturbed eigenmodes (Frequencies, weighting factors for series expansion)

Proof of Principle I

- Analytically evaluable cavity shape
 - Use of <u>analytically</u> computed unperturbed and eigenmodes
 - \rightarrow Any desired number of unperturbed modes usable for series expansion
 - \rightarrow Very high precision for implementation
 - \rightarrow Very low effort

- Computation example
 - cylindrical cavity
 - subject to radial perturbation of 5%
 - Investigation of TM_{0n0} modes (n: radial mode index)

Proof of Principle II:

- Using only a small number of unperturbed modes TM_{0.1.0} to TM_{0.54.0}
- Relative error of perturbed frequencies < 10⁻³
- Longitudinal electric field along the radius r

Proof of Principle II:

- Using only a small number of unperturbed modes TM_{0.1.0} to TM_{0.54.0}
- Relative error of perturbed frequencies < 10⁻³
- Longitudinal electric field along the radius r

 $\Delta R/R = 5\%$, 54 modes $(\tilde{E}_z - \hat{E}_z)/(V/m)$ 1.0×10^{3} Deviation is less 0.5×10^{3} than 10⁻³ of maximal value -0.5×10^{3} 0.5+ TM_{010} -1.0×10^{3} -1.5×10^{3} $-TM_{040}$ \tilde{E}_{z} Very accurate results perturbed longitudinal E-field (GST) Ê~ perturbed longitudinal E-field (analytical)

Numerical Implementation

Traditio et Innovatio

Basic Operations of Numerical Implementation

- Computation of unperturbed eigenmodes
 Unperturbed frequencies and fields
- Computation of volume integrals
- Computation of interaction terms
- Evaluation of arithmetic operations
 Perturbed frequencies and weighting factors
- Series expansion in terms of unperturbed fields
 → Perturbed fields

- Simple & Low effort
- Equal for analytical and numerical implementation

Traditio et Innovatio

Numerical computation of unperturbed eigenmodes

- Result relevant parameters
 - Mesh density
 - Exactness of boundary discretization
 - \rightarrow Accuracy of unperturbed frequencies and fields
- Depends on
 - Cavity geometry
 - Frequency range / minimal wavelength
 - → Computation method

Accuracy of boundary fields very important

FIT*-based Eigenmode-Computation (CST-MicrowaveStudio©)

- Dual grid with hexahedral cells and PBA (partially filled cells)
 - Inner fields: Good approximation
 - Fields near to the boundary: abrupt transition to zero

K. Brackebusch

28.08.2012 © 2012 UNIVERSITY OF ROSTOCK | Institute for General Electrical Engineering

FIT*-based Eigenmode-Computation (CST-MicrowaveStudio©)

- Dual grid with hexahedral cells and PBA (partially filled cells)
 - Inner fields: Good approximation
 - Fields near to the boundary: abrupt transition to zero
- Boundary fields are of <u>crucial</u> importance for volume integrals

FEM*-based Eigenmode-Computation (CST-MicrowaveStudio©)

- Tetraeder-Grid with Curved Elements
 - Better approximation of boundary curve
 - No oscillations

K. Brackebusch

28.08.2012

© 2012 UNIVERSITY OF ROSTOCK | Institute for General Electrical Engineering

20

Traditio et Innovatio

FEM*-based Eigenmode-Computation (CST-MicrowaveStudio©)

- Tetraeder-Grid with Curved Elements
 - Better approximation of boundary curve
 - No oscillations
 - Defective boundary range essentially smaller
 - \rightarrow Especially for elliptical cavities more accurate results

Extrapolation of Boundary Field Values

After computation of unperturbed eigenmodes (CST MWS) Fields have to be exported as discrete field points But still: Field points inside defective boundary range \rightarrow Incorrect field values of zero \rightarrow Impairment of volume integrals Simple but effective solution Extrapolation of defective field value from set of correct values along surface normal vector surface normal \rightarrow 1D interpolation defective boundary range Interpolation values Extrapolated value

• Interpolation of discrete field data \rightarrow Continuous 3D IP-functions for integration $IT_{E(ik)} = \int \int \int \mathbf{E}_i(\mathbf{r}) \cdot \mathbf{E}_k(\mathbf{r}) d\mathbf{r}$

$$IT_{E(ik)} = \iiint_{\Delta V} \mathbf{E}_i(\mathbf{r}) \cdot \mathbf{E}_k(\mathbf{r}) \, \mathrm{d}V$$

- For very accurate results
 - IP-functions with polynomial degree > 1 needed

Interpolation of discrete field data

 \rightarrow Continuous 3D IP-functions for integration

$$IT_{E(ik)} = \iiint_{\Delta V} \mathbf{E}_{i}(\mathbf{r}) \cdot \mathbf{E}_{k}(\mathbf{r}) \, \mathrm{d}V$$

- For very accurate results
 - IP-functions with polynomial degree > 1 needed
 - Only realizable on a structured grid
 - \rightarrow <u>Very large</u> number of field points

Interpolation

- Export of field values
- 3D Interpolation of degree > 1

- Numerical integration: Summation of products of discrete fields and discrete volume $\iiint \mathbf{E}_{i}(\mathbf{r}) \cdot \mathbf{E}_{k}(\mathbf{r}) \, dV \rightarrow \sum_{m=1}^{M} \mathbf{E}_{i}(\mathbf{r}_{m}) \cdot \mathbf{E}_{k}(\mathbf{r}_{m}) \cdot \Delta V_{m}$
- Partitioning of ΔV into volume elements Commonly used cubic elements: very inaccurate for boundary elements
- Solution: <u>Analytical volume elements</u>

If boundary of ΔV and element intersect: analytical computation of volume and center

- Numerical integration: Summation of products of discrete fields and discrete volume $\iiint \mathbf{E}_{i}(\mathbf{r}) \cdot \mathbf{E}_{k}(\mathbf{r}) \, dV \rightarrow \sum_{m=1}^{M} \mathbf{E}_{i}(\mathbf{r}_{m}) \cdot \mathbf{E}_{k}(\mathbf{r}_{m}) \cdot \Delta V_{m}$
- Partitioning of ΔV into volume elements
 Commonly used cubic elements: very inaccurate for boundary elements
- Solution: <u>Analytical volume elements</u>

If boundary of ΔV and element intersect: analytical computation of volume and center

Cubic elements (analytical)

Cylindrical elements (analytical)

Computation of perturbed fields

- Final arithmetic operations yield
 - Perturbed frequencies
 - Weighting factors for series expansion
- Series expansion of perturbed fields

$$egin{array}{rcl} \widetilde{\mathbf{E}}_{\mathrm{i}}(\mathbf{r}) &=& \displaystyle{\sum_{\mathrm{k}=1}^{N} e_{\mathrm{ik}} \cdot \mathbf{E}_{\mathrm{k}}(\mathbf{r})} \ \widetilde{\mathbf{H}}_{\mathrm{i}}(\mathbf{r}) &=& \displaystyle{\sum_{\mathrm{k}=1}^{N} h_{\mathrm{ik}} \cdot \mathbf{H}_{\mathrm{k}}(\mathbf{r})} \end{array}$$

- CST MWS post processing: Summation of unperturbed fields multiplied by weighting factors
- External program: Export of unperturbed fields
 → Summation of discrete field values

Results

Numerical computation of unperturbed eigenmodes

- Computation example
 - Cylindrical cavity (R=100 mm, L=100 mm, fundamental mode: 1.15 GHz)
 - Investigation of TM_{2n2} modes subject to radial perturbations
- Eigenmodes computable in a very large frequency range
 - Up to 35.71 GHz

Numerical computation of unperturbed eigenmodes

- Computation example
 - Cylindrical cavity (R=100 mm, L=100 mm, fundamental mode: 1.15 GHz)
 - Investigation of TM_{2n2} modes subject to radial perturbations
- Eigenmodes computable in a very large frequency range
 - Up to 35.71 GHz
 - Frequency error < 1.6·10⁻⁴

Traditio et Innovatio

Computation of Volume Integrals: Size of elements

- Necessary step size depends on
 - Frequency / wave length
 - Extent of perturbation

ΔR/R	ΔR	Step size	# elements
1 %	1 mm	0.25 mm	500000
5 %	5 mm	0.5 mm	306000
20 %	20 mm	1 mm	150000

Reasonable number of mesh cells

- IT_E (electric fields) : Very accurate
 - Relative error mainly < 2.10⁻³
 - Only for small values of IT_E larger error

28.08.2012 © 2012 UNIVERSITY OF ROSTOCK | Institute for General Electrical Engineering

K. Brackebusch

Traditio et Innovatio

Computation of Volume Integrals: Accuracy

- IT_E (electric fields) : Very accurate
 - Relative error mainly < 2.10-3
 - Only for small values of IT_E larger error

K. Brackebusch

- IT_H (magnetic fields) : Very accurate for limited frequency range
 - Up to 21 GHz (13th mode): Relative error < 7.10⁻³
 - Increases up to 3.10⁻² for frequencies

28.08.2012 © 2012 UNIVERSITY OF ROSTOCK | Institute for General Electrical Engineering

Interaction Terms & Final Results

Accuracy depends on perturbative method

Conclusion & Outlook

🚺 Traditio et Innovatio

Conclusion

- Perturbation Theory: <u>Efficient</u> method to compute perturbed eigenmodes of cavities in the context of parameter studies
- Numerical implementation
 - Feasible with commonly used standard software
 - (Very) accurate results over a large frequency range
 - Reasonable computational effort
 - Differences in error propagation depending on perturbative method
 - \rightarrow Application to arbitrary cavity geometries

Outlook

- Application to real cavities (elliptical cavities)
- Improvement of algorithm of perturbative methods

References

[1] D. Meidlinger, *A General Perturbation Theory for Cavity Mode Field Pattern*, Proceedings of SRF2009, Berlin, Germany, THPPO005, 2009.

[2] K. Brackebusch, U. van Rienen, *Eigenmode Computation for Cavities with Perturbed Geometry based on a Series Expansion of Unperturbed Eigenmodes*, Proceedings of 3rd IPAC, pp. 277-279, New Orleans, USA, 2012.

[3] K. Brackebusch, H.-W. Glock, U. van Rienen, *Eigenmode Calculation of High Frequency Fields in Resonant Cavities based on Perturbation Theory*, Proceedings of 2nd IPAC, San Sebastian, Spain, pp.2235-2237, 2011.

[4] Computer Simulation Technology AG, *Microwave Studio®*, 64289 Darmstadt, Germany.

[5] Wolfram Research Inc., *Mathematica® Edition: Version 8.0*, Champaign, 2010.