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Abstract

In this paper, we present a time integration scheme ap-

plied to the Discontinuous Galerkin finite element method

(DG-FEM, [1]) for the computation of electromagnetic

fields in the interior of three-dimensional structures. This

approach is also known as Arbitrary High-Order Deriva-

tive Discontinuous Galerkin (ADER-DG, [2, 3]). By this

method, we reach arbitrary high accuracy not only in space

but also in time. The DG-FEM allows for explicit formu-

lations in time domain on unstructured meshes with high

polynomial approximation order. Furthermore, the Discon-

tinuous Galerkin method in combination with the arbitrary

high order time integration scheme is well suited to be used

on massively parallel computing architectures. Moreover

the method can be extended for local time stepping to be-

come more efficiently by reducing the computation time

[4].

INTRODUCTION

For the design and optimization of Higher-Order-Mode

Coupler (Fig. 1), used in RF accelerator structures, numer-

ical computations of electromagnetic fields as well as scat-

tering parameter are essential. These computations can be

carried out in time domain. In this work the implementa-

tion and investigation of a time integration scheme based on

the Discontinuous Galerkin Finite-Element Method (DG-

Figure 1: Tapered beam pipe with Higher-Order-Mode

Coupler. The aspect ratio of such a grid is relatively high,

due to the filigree structure of the antenna. Therefore, such

a model is well suited for the application of local time step-

ping schemes.
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FEM) with arbitrary order in space and time is demon-

strated for solving 3-D electromagnetic problems in time

domain.

THE NUMERICAL SCHEME

With known initially and boundary conditions it is suf-

ficient to describe classic electromagnetic phenomena only

by AMPERE’s and FARADAY’s law of MAXWELL equa-

tions. The partial differential equations can be written in

the following general form:

∂u

∂t
+A1

∂u

∂x
+A2

∂u

∂y
+A3

∂u

∂z
= 0, (1)

where

u(x, y, z, t) = (Ex, Ey, Ez, Hx, Hy, Hz)
T . (2)

The space-dependent Jacobian matrices Ai determine the

physical behavior of the equations. They contain material

properties as well as the curl operator applied to E- and H-

field. To solve this ordinary partial differential equation,

a physical initial condition as well as boundary conditions

are still needed.

For the numerical scheme the computational domain

Ω ∈ R
3 will be partitioned into conforming tetrahedral

elements Dk. The approximate solution u
k
h of (1) inside

each tetrahedron Dk is given by:

u
k
h =

Np
∑

i=1

û
k
i (t) ·Φ

k
i (x). (3)

Here Φk
i (x) are the nodal ansatz functions and û

k
i (t) are

the time-dependent degrees of freedom which are allocated

at the nodes of the element Dk.

Figure 2: Reference element with the nodes on which the

time-dependent degrees of freedom are defined. (left: 3rd

order ansatz functions, right: 4th order ansatz functions)
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Multiplication of Equation (1) by test functions Φj(x)
and integration over the element Dk followed by integra-

tion by parts results in the following variational formula-

tion [1, 2]:

∫

Dk

Φj

∂uk
h

∂t
dV +

∫

∂Dk

ΦjFhdS−

∫

Dk

(

∂Φj

∂x
A1u

k
h +

∂Φj

∂y
A2u

k
h +

∂Φj

∂z
A3u

k
h

)

dV = 0,

(4)

where we introduced the numerical flux that provides the

coupling between the solutions of adjacent elements. This

weak formulation allows for solutions in Ω which are dis-

continuous at the borders between the elements Dk. The

surface and volume integrals over the ansatz- and test func-

tion, respectively their derivatives will be pre-computed for

the reference element (Fig. 2) and adapted onto each ele-

ment Dk by conformal mapping. Equation (4) has to be

fulfilled for every test function Φj , which leads to a linear

system of equations with the well known mass matrix Mk

and stiffness matrices Sk
x , Sk

y and Sk
z :

Mk
(i,j) =

∫

Dk

Φi(r)Φj(r)dΩ = 〈Φi|Φj〉

Sk
x(i,j)

=

∫

Dk

∂Φi(r)

∂x
Φj(r)dΩ = 〈

∂Φi

∂x
|Φj〉.

The resulting semi-discrete formulation corresponds to ho-

mogeneous differential equations with time derivations,

which can be written for every element Dk as:

duk
h

dt
= Lk(uk

h, t), (5)

with the operator Lk that summarizes the mass- and stiff-

ness matrices as well as the numerical flux. To get a fully

discrete scheme in space and time we redraft Equation (5)

in the integral form:

u
k
h(tn+1) = u

k
h(tn) +

tn+∆t
∫

tn

Lk(uk
h, τ)dτ . (6)

This leads to time integration schemes, where the problem

lies now in the approximation of the integral in Equation

(6). In the case of the MAXWELL equations the opera-

tor Lk behaves linear for uk
h and is independently on the

time. This enables the possibility to change the order of

integration and application of the operator Lk, what is ad-

vantageous but not necessary for the ADER approach. For

the following formulas we remove the superscript k in u
k
h

and all matrices to simplify the expressions. This means

also that the following procedure for the time integration is

carried out separately for each element.

ARBITRARY HIGH-ORDER DERIVATIVE

TIME DISCRETIZATION

The basic idea of the ADER approach is the TAYLOR-

expansion of the numerical solution in time, which allows

for an analytical time integration.

uh(x, y, z, t) =
N
∑

p=0

tp

p!

∂p

∂tp
uh(x, y, z, t0) (7)

The foundation for this approach is the CAUCHY-

KOWALEWSKAYA theorem that asserts a unique analytic

solution for the considered boundary problem in the neigh-

borhood of t0. Here, N determines the convergence order

of the resulting time integration scheme.

The time derivatives will be replaced by spatial deriva-

tives based on the problem (1) itself.

∂p
uh

∂tp
= (−1)p

(

A1
∂

∂x
+A2

∂

∂y
+A3

∂

∂z

)p

uh (8)

Since the ansatz functions Φi are only defined for a refer-

ence element, which is given in the (ξηζ)- coordinate sys-

tem, the spatial derivatives have to be carried out with re-

spect to ξ, η and ζ. Equation (8) can be rewritten with a

linear transformation from the reference element to every

individual tetrahedral element Dk as:

∂p
uh

∂tp
= (−1)p

(

A∗

1

∂

∂ξ
+A∗

2

∂

∂η
+A∗

3

∂

∂ζ

)p

uh. (9)

For the MAXWELL equations, for example the transformed

Jacobi matrice A∗

1 offers the following structure:

A∗

1 =

(

0 Cξ
CT
ξ 0

)

, with Cξ =







0 −∂ξ
z

∂ξ
y

∂ξ
z

0 −∂ξ
x

−∂ξ
y

∂ξ
x

0






.

(10)

Clearly, these matrices differ from element to element. To-

gether with Equation (9), the analytical expression for the

approximate solution uh in Equation (7) can be rewritten

as:

uh(ξ, η, ζ, t) =
N
∑

p=0

tp

p!
(−1)p

(

A∗

1

∂

∂ξ
+A∗

2

∂

∂η
+

+A∗

3

∂

∂ζ

)p

uh(ξ, η, ζ, t0)

(11)

Similar to finite element methods, this approximation will

be projected onto each test function in order to get an ap-

proximation of the evolution of the degrees of freedom

ûj(t) during one time step from tn to tn+1.

ûj(t)〈Φn|Φj〉 = 〈Φn|
N
∑

p=0

tp

p!
(−1)p×

×

(

A∗

1

∂

∂ξ
+A∗

2

∂

∂η
+A∗

3

∂

∂ζ

)p

|Φi〉ûi(t0)

(12)
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On the left hand side of Equation (12) we find again the

elements of the mass matrix M(n,j), which is already used

for the DG-FEM. Furthermore, after expansion of the right

hand side we obtain also the following projections:

Sλµν

(n,i) = 〈Φn|
∂p

∂ξλ∂ηµ∂ζν
Φi〉, (13)

where λ+ µ+ ν = p and λ, µ, ν ≥ 0. All these projection

matrices can be pre-computed for the reference element by

a computer algebra system once and then be stored. In the

case of nodal ansatz functions, that result from an inter-

polation on orthonormal polynomials it is not necessary to

compute the projections. Instead, we can use the following

relation from [1]:

(M−1Sλµν)(i,j) =
∂p

∂ξλ∂ηµ∂ζν
Φj

∣

∣

∣

∣

ξi,ηi,ζi

. (14)

By using only these derivation matrices we directly obtain

an explicit expression for the time dependent degrees of

freedom ûj(t) in Equation (12), due to the contained mul-

tiplication with the inverse mass matrix.

Finally, the integral of the time dependent degrees of

freedom from tn to tn+1 can be written as:

t0+∆t
∫

t0

û
k
j (t)dt = M−1

(n,j)〈Φn|

N
∑

p=0

∆t(p+1)

(p+ 1)!
(−1)p

(

A∗

1

∂

∂ξ
+A∗

2

∂

∂η
+A∗

3

∂

∂ζ

)p

|Φi〉û
k
i (t0).

(15)

With the L operator applied on these resulting matrices,

the fully time integration in Equation (6) is performed with

arbitrary high order accuracy N .

RESULTS

The numerical method for the spatial discretization is

implemented in NUDG++, an open source framework writ-

ten in C++. The time integration procedure is currently in

progress, but runs already on CPU. It follows the imple-

mentation for GPU’s, which accelerates the algorithm ex-

tensive. At this time the algorithm is tested only for a first
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Figure 3: Left: Electric field distribution of the Ez compo-

nent in a rectangular resonator. Right: The corresponding

time evolution of Ez in the center of the cavity.
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Figure 4: Comparison between ADER time integration

scheme and a 4th order RUNGE-KUTTA scheme. Top: 3rd

order ansatz functions, Bottom: 4th order ansatz functions.

simple example, the lossless rectangular cavity (Fig. 3).

In Figure 4 the relative error is shown for the ADER

scheme compared with a 4th order RUNGE-KUTTA

scheme. For the same convergence order the errors of both

algorithms lies as expected in the same order of magnitude.

CONCLUSIONS AND OUTLOOK

By using only one CPU core the 4th order RUNGE-

KUTTA scheme is ∼ 3 times faster then the ADER ap-

proach in the same convergence order (3rd order ansatz

functions). This relation factor reduces in the case of 4th

order ansatz functions to 2. An implementation on paral-

lel architectures probably improves this ratio related to the

ADER aproach. Therefore we are currently focused on an

implementation for GPUs with the Cuda or OpenCL frame-

work.
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