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Abstract

Geometry perturbations affect the eigenmodes of a reso-
nant cavity and thereby can improve but also impair the per-
formance characteristics of the cavity. To investigate the ef-
fects of both, intentional and inevitable geometry variations
parameter studies are to be undertaken. Using common
eigenmode solvers involves to perform a full eigenmode
computation for each variation step, even if the geometry
is only slightly altered. Therefore, such investigations tend
to be computationally extensive and inefficient. Yet, the
computational effort for parameter studies may be signifi-
cantly reduced by using perturbative computation methods.
Knowing a set of initial eigenmodes of the unperturbed ge-
ometry these allow for the expansion of the eigenmodes of
the perturbed geometry in terms of the unperturbed modes.
In this paper, we study the complexity of a numerical im-
plementation of perturbative methods. An essential aspect
is the computation and analysis of the unperturbed modes
since the number and order of these modes determine the
accuracy of the results.

INTRODUCTION

Aiming to design a cavity with best possible perfor-
mance it is necessary to optimize miscellaneous of its char-
acteristics that all depend on the cavity’s eigenmodes. The
cavity shape mainly influences these characteristics and has
to be changed numerous times during the optimization pro-
cess. Any geometry modification entails a full recomputa-
tion of the eigenmodes causing an immense total computa-
tional effort. Perturbative methods allow for avoiding this
repetitive procedure. The methods (discussed here) base on
the approach of computing the eigenmodes (denoted as un-
perturbed) of exclusively one initial geometry using a com-
mon computation method and deriving the eigenmodes (de-
noted as perturbed) of a modified geometry directly from
the unperturbed eigenmodes with substantially less effort.

To do so, the interaction of each unperturbed mode i with
every other unperturbed mode k has to be determined by
forming an expression that includes their resonant frequen-
cies f and a volume integration over the scalar product of
their electric / magnetic fields E(r), H(r)

ITE(ik) =

∫∫∫
∆V

Ei(r) ·Ek(r) dV (1)
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ITH(ik) =

∫∫∫
∆V

Hi(r) ·Hk(r) dV (2)

Here ∆V is the volume that is removed by the modification
from the unperturbed volume V . Applying further arith-
metic operations to the resulting interaction term (IT) ma-
trix finally yields the perturbed resonant frequencies and
weighting factors that allow for expanding each perturbed
electromagnetic field as a series of the unperturbed fields.
In [1] and [2] two perturbative methods differing in the
composition of their ITs and arithmetic operations are de-
scribed in detail.

In [2] and [3] their applicability was proved by means
of analytically evaluable cavity geometries providing very
accurate results. Using analytically computed unperturbed
eigenmodes all operations can be implemented with very
high precision and very low effort. However, for most
cavity structures the unperturbed modes have to be nu-
merically computed. This is not only more complex and
affected by additional numerical errors but also involves
some difficulties that are discussed in the following. The
numerical implementation was investigated using the ex-
ample of a cylindrical cavity subject to one-dimensional
perturbations to compare its outcomes with the analytically
computed ones.

NUMERICAL IMPLEMENTATION
The computation of the unperturbed eigenmodes is the

first and most expensive operation but has to be done only
once for a certain cavity structure. It is required for the
ITs and the series expansion and therefore particularly im-
portant for the accuracy of the results. The simulations are
done with CST MWS Eigenmode Solver [4]. The integrals
ITE and ITH solely depend on the fields in the boundary
region (where the perturbation occurs). Besides an appro-
priate mesh density, hence a precise discretization of the
boundary is significant. Since a discrepancy between dis-
cretized and actual boundary leads to an abrupt transition of
the fields to zero (Fig. 1) an insufficient discretization may
seriously impair the accuracy of the ITE and ITH . The Fi-
nite Element Method (FEM) combined with a tetrahedral
mesh and curved elements proved to reproduce the bound-
ary much more precisely than the hexahedral dual grid of
the Finite Integration Theory (FIT). Therefore, here, FEM
should be used for the eigenmode computation of cavities
with a curved shape.

For the further processing the computed fields have to
be exported from CST MWS as discrete field points. But
despite the achieved precise boundary discretization using
FEM some of these field values are still affected by the de-
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Figure 1: Hϕ(r), cavity radius R: 100 mm, method: FIT.
FEM-computed fields have a significantly smaller defective
boundary range (0.3 µm) than the shown FIT-computed
ones (70 µm) which are allocated on the dual grid in a cer-
tain distance to the boundary.

Figure 2: One-dimensional extrapolation of defective value
(red) from correct values on the boundary surface normal.

fective boundary range. To minimize this impact a simple
but effective procedure was developed. For it, each discrete
field value that lies inside the defective region is extrapo-
lated from a set of correct values located on the surface
normal vector of the boundary (Fig. 2). By doing so, the
accuracy of the ITs can be further improved.

For the computation of the ITs (done with Wolfram
Mathematica [5]) two approaches were pursued. For the
first approach, all discrete fields are interpolated to create
continuous functions for the volume integration in Eqs. 1
and 2 in order to achieve a high accuracy. However, the
computation of the interpolation functions and integrals
turned out to cost an enormous effort. The main reason
is that very accurate results can only be obtained by an in-
terpolation of higher degree. But this can only be done
on a structured grid which requires to interpolate the fields
inside a larger volume than ∆V (in many cases the com-
plete volume V ) while the grid density must be kept ap-
propriate for ∆V . Such a three-dimensional higher degree
interpolation for a huge number of grid points is very inef-
ficient. Consequently, an alternative approach was needed.
Its main idea is to partition the volume ∆V into elements,
determine the discrete field values in their centers and then
substitute the integration by a summation of the products

Figure 3: Volume partitioning of a cylinder (cross cut): (a)
Pure cubic elements. (b) Cubic / (c) cylindrical elements
with analytically determined boundary elements.

of the discrete integrands and volumes. These basic opera-
tions need only little effort and solely the fields inside ∆V
have to be processed. But the commonly used partitioning
into cubic elements (Fig. 3(a)) is not adequate for a summa-
tion over ∆V because of the required precise boundary dis-
cretization. Therefore, an improved partitioning algorithm
was developed. If the boundary of ∆V and an element in-
tersect volume and center of the element change. But both
can be analytically computed due to the fact that usually all
cavity shapes are described by (piecewise) analytical func-
tions (Fig. 3(b),(c)). Correcting these intersection elements
can essentially improve the accuracy of the ITE and ITH .

After the computation of all ITs, the arithmetic opera-
tions of the respective method (mostly matrix operations)
have to be performed. These finally yield the perturbed
resonant frequencies and the weighting factors of the se-
ries expansion. The operations are equal for analytically
and numerically computed ITs and easy to implement with
a low effort and very high accuracy. In case that besides
the frequencies also the perturbed fields or certain cavity
characteristics (e.g. Epeak/Eacc or Qext) are desired the
complete or at least parts of unperturbed fields have to be
previously exported to do the series expansion.

RESULTS
In the following, the implementational outcomes for a

radial perturbation of a cylindrical cavity (R=100 mm,
L=100 mm, fundamental mode of 1.15 GHz) investigating
TM2.n.2 modes (n: radial mode index) are exemplarily dis-
cussed. The frequencies of the numerically computed un-
perturbed mode are highly accurate. The relative deviation
is less than 1.6 · 10−4 inside a very large frequency range
(up to 35.71 GHz). Thereby an essential condition for the
following operations is fulfilled since all intermediate and
final results highly depend on the computable frequency
range. However, it has to be considered that the accuracy
degrades with increasing frequency due to the fact that the
number of simulated mesh cells is limited by the available
memory (Fig. 4).

To obtain accurate ITE and ITH the discrete volume el-
ements have to be chosen small enough to properly dis-
cretize the fields of all unperturbed modes. While the ITE

and ITH of modes with a low frequency can be computed

Figure 4: Parameters of CST MWS eigenmode computa-
tion of TM2.1.2 to TM2.23.2. The intended steps per wave-
length reduce from 12 GHz on due to full memory usage.
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with very coarse elements their accuracy for higher modes
largely depends on the element step size (Fig. 5(a)). How-
ever, a large perturbation does not require elements as fine
as a small perturbation does (Fig. 5(b)). A very precise step
size is only needed if the perturbation is also very small.
Considering this, the efficiency can be increased by avoid-
ing the use of an unnecessarily large number of elements.

Choosing volume elements with an appropriate dis-
cretization and effort, the relative deviation of the integral
ITE of the electrical fields is largely below 2 · 10−3 and
hence very accurate (Fig. 6). Only for comparatively small
ITE it rises up to 7.42 · 10−3. The deviation of the ITH

is equal up to the 13th mode. The ITH of higher modes
are relatively small so that they are increasingly impaired
by the numerical simulation error. As a consequence the
relative deviation rises up to 3 · 10−2. The accuracy of the
final ITs depends on the used perturbative method. For [2]
solely the ITE are required so that the so computed ITs
remain as accurate as the ITE . But for the ITs in [1] the
integrals ITE and ITH are multiplied by the further quan-
tities and subtracted from each other. Thereby the relaitve
error contribution of ITE and ITH changes. This may in-
crease the deviation for some of the resulting ITs. Due to
the complexity of the mathematical relations the details are
not discussed here.

Compairing the final results, the perturbed frequencies f̃

Figure 5: Relative error of selected ITE(ii) depending on the
step size of the volume elements ( — cubic, - - - cylindridal)
for different modes (a) and radial perturbations (b).

Figure 6: Absolute values and relative error of the ITE and
ITH for radial perturbation of 5% using 3.4 ·105 cubic vol-
ume elements with 0.5 mm step size. For two ITH that are
almost zero the error is not shown (black areas).

based on a numerically implementation highly coincide
with the ones based on an analytically implementation
(Fig. 7). This proves the practicability and accuracy of a
numerical implementation. Figure 7 also shows that the re-
sults using [1] deviate more from the expected ones than
the results using [2] due to the previous described different
composition of the ITs.

Figure 7: Relative deviation between perturbed frequencies
based on numerically computed unperturbed eigenmodes
and the ones based on analytically computed eigenmodes.

CONCLUSIONS
The investigations showed that a completely numeri-

cal implementation of perturbative methods using standard
software is feasible. The development of special proce-
dures for the processing of numerically computed unper-
turbed eigenmodes allows for a very accurate and effi-
cient computation of the necessary basic parameters (un-
perturbed frequencies and volume integrals of the electro-
magnetic fields) over a large frequency range. The per-
turbed eigenmodes determined from these basic parame-
ters very exactly match the results of analytically compar-
ative calculations. But it also became apparent that there
are differences in the error propagation depending on the
algorithm of the used method which should be further ex-
amined.

The most important conclusion of the investigations is
that the implementation algorithm described in this paper
allows for the application of perturbative methods to any
desired cavity geometry providing reasonable results.
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