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Abstract

The prediction of RF properties of complex accelerating

structures is an important issue in computational accele-

rator physics. This paper describes the derivation of state

space equations for complex structures based on real eigen-

modes of sections of the decomposed complex structure.

The state space equations enable the calculation of system

responses due to port excitations by means of standard or-

dinary differential equation solvers. Therefore, the state

space equations are referred to as lumped equivalent mod-

els of such complex RF structures. Besides fast computa-

tion of system responses, the equivalent models enable the

calculation of secondary quantities such as external qual-

ity factors. The present contribution discusses theoretical

aspects by means of a validation example.

INTRODUCTION

The investigation of complex radio frequency (RF) struc-

tures is a crucial task in the design of particle accelerators.

Often the treatment of these complex and large RF devices

exceeds the capabilities of modern workstation computers.

Therefore, many problems are tackled by means of cluster

computers in combination with suitable parallel simulation

codes (e.g. ACE3P [1]). In this contribution a proof of

principle for an alternative approach is presented. Here,

the complex structure is decomposed into segments like-

wise it is proposed by the method of Coupled S-Parameter

Calculations (CSC) [2, 3]. This decomposition has the fol-

lowing advantages:

• The separate treatment of the segments is less time-

and memory-consuming.

• The properties of equal segments need to be computed

only once.

• If sections show symmetries their treatment can be

further simplified.

• If Maxwell’s equations can be solved analytically for

sections their numerical treatment is not needed.

• If parameter studies are of interest only the properties

of sections with free parameter(s) need to be recalcu-

lated.

After decomposition of the complex structure, state

space equations in an impedance formulation for the seg-

ments are created by a 3D eigenmode expansion [4, 5, 6].

These impedance state space equations are also referred to

∗ partially funded by EU FP7 Research Grant No. 227579
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as lumped equivalent models of the segments as they de-

scribe the dependency of the transient modal voltages on

transient modal currents at the segment’s waveguide ports.

By employing a modification of the CSC scheme, the state

equations of the segments are combined to obtain the state

space equations of the complete structure. These equations

allow for the computation of transient system responses as

well as frequency domain transfer functions. Furthermore,

secondary quantities such as external quality factors can be

derived from the lumped model. In addition, the field distri-

bution inside the full structure is also available as the state

equations for the individual segments are obtained by a 3D

eigenmode expansion.

In comparison to [6] where the coupling scheme is intro-

duced and the focus lies on theoretical derivations, this pa-

per presents a more sophisticated application example for

the creation of lumped equivalent models of complex RF

structures.

APPLICATION EXAMPLE AND

CREATION OF ITS LUMPED MODEL

A third harmonic cavity with three cells (see [7] for geo-

metric details) and simplified higher order mode (HOM)

couplers1 is chosen as an application example. The entire

structure is considered to be lossless and the beam pipes

are shortcut with perfect electric conducting (PEC) walls.

Fig. 1 shows the structure under test and its decomposition

into segments. The entire structure is comparably small

and not complex such that the direct numerical calculation

of its properties like the transfer function is easily feasible

for the sake of comparison and validation. To model these

sections, five different state space equations of the form

∂

∂t
xr(t) = Ar xr(t) +Br ir(t), (1)

vr(t) = BT
r xr(t). (2)

1An antenna tip protruding into the beam pipe.

Figure 1: Lossless third harmonic cavity with two end

cells, one middle cell and two simplified HOM couplers

and its decomposition into five segments (left coupler, left

end cell, middle cell, right end cell and right coupler).
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are established. The matrix Ar is the state matrix, Br the

input matrix and BT
r the output matrix of the r-th section.

The excitation term ir(t) embraces the modal currents at

the waveguide ports of the r-th segment and vr(t) com-

bines its modal voltages, respectively:

ir(t) =













ir,1(t)
ir,2(t)

...

ir,m(t)
...

ir,Mr
(t)













and vr(t) =













vr,1(t)
vr,2(t)

...

vr,m(t)
...

vr,Mr
(t)













. (3)

Here Mr denotes the number of total waveguide port

modes of the section indexed by r.

The state matrices in (1) and (2) are obtained by a

real eigenmode computation for each segment with perfect

magnetic conducting (PMC) boundary conditions on the

cross section of the waveguide ports and PEC boundary

conditions on the remaining boundaries [4, 6]. In addition

to the eigenfrequencies and modes, the impedance matrix

of each segment is computed on 10 discrete frequency sam-

ples to calculate a correction term which accounts for non

considered higher (or lower) order modes [4, 5, 6]. All

computations are performed by CST Studio Suite R© [8].

Hereinafter details on the individual calculations are pre-

sented.

State Space Matrices for HOM Coupler

Fig. 2 illustrates the left HOM coupler (segment index

r = 1) and its network theoretical counterpart with the gen-

eralized voltages and currents of the respective waveguide

modes. At the coaxial port of the coupler only the TEM

mode is considered (port mode index m = 1), whereas

12 circular waveguide modes at the beam pipe are used

for the concatenation (port mode indices m = 2, . . . , 13).

The HOM coupler is discretized exploiting its symmetry

on a hexahedral mesh with 34, 200 mesh cells. Based on

this meshing 50 eigenmodes are computed in combination

with 10 impedance matrices sampled on discrete frequen-

cies for the correction term. Furthermore, the field distri-

butions of 13 2D port modes are determined by the CST

Microwave Studio R© frequency domain solver. Based on

these calculations the matrices AHOM ∈ R
151×151 and

BHOM ∈ R
151×13 are obtained (refer to (1) and (2)).

State Space Matrices for End and Middle Cell

Fig. 3 illustrates the end cell and its equivalent circuit di-

agram with generalized voltages and currents of the wave-

guide modes (the treatment of the middle cell is analogous).

On both cut planes 12 port modes are used for the 2D field

expansion. The end cell is discretized on a hexahedral mesh

with 58, 806mesh cells exploiting one symmetry plane (for

the middle cell 39, 600 mesh cells are used). By employing

this discretization 50 eigenmodes are computed in combi-

nation with 10 impedance matrices needed for the correc-

tion term. Furthermore, the field distributions of 24 2D

Figure 2: Lossless HOM coupler (left) and its equivalent

circuit diagram (right) with indicated modal voltages (blue

arrows) and currents (red arrows).

port modes (12 modes on each cut plane) are determined

by the CST Microwave Studio R© frequency domain solver.

Based on these calculations the matrices for the endcells

Aec ∈ R
176×176, Bec ∈ R

176×24 and for the midcells

Amc ∈ R
184×184, Bmc ∈ R

184×24 are obtained.

Figure 3: Lossless end cell (left) and its network theoreti-

cal counterpart (right) with the generalized voltages (blue

arrows) and currents (red arrows).

Concatenation of the Sections

To obtain a lumped equivalent model of the complete

structure, the state equations for the five individual seg-

ments are collected by the block system

∂

∂t








x1(t)
x2(t)

...

x5(t)








︸ ︷︷ ︸

xd(t)

=








A1 0 . . . 0

0 A2 . . . 0
... . . .

. . .
...

0 . . . . . . A5








︸ ︷︷ ︸

Ad








x1(t)
x2(t)

...

x5(t)








︸ ︷︷ ︸

xd(t)

+








B1 0 . . . 0

0 B2 . . . 0
... . . .

. . .
...

0 . . . . . . B5








︸ ︷︷ ︸

Bd








i1(t)
i2(t)

...

i5(t)








︸ ︷︷ ︸

ican(t)

,

(4)

where A1 = A5 = AHOM , A2 = A4 = Aec, A3 =
Amc, B1 = B5 = BHOM , B2 = B4 = Bec and B3 =
Bmc. In the same manner, the output equations (2) are
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combined for all sections:







v1(t)
v2(t)

...

v5(t)








︸ ︷︷ ︸

vcan(t)

=








BT
1 0 . . . 0

0 BT
2 . . . 0

... . . .
. . .

...

0 . . . . . . BT
5








︸ ︷︷ ︸

BT

d








x1(t)
x2(t)

...

x5(t)








︸ ︷︷ ︸

xd(t)

. (5)

The resulting ordering of the currents ican(t) and voltages

vcan(t) is defined as canonical ordering. It is reordered by

a permutation matrix PT (one coefficient equal to one in

each row and in each column, while the remaining coef-

ficients are equal to zero) to sort for internal and external

quantities:

isort(t) =

(
iint(t)
iext(t)

)

= PT ican(t), (6)

vsort(t) =

(
vint(t)
vext(t)

)

= PT vcan(t). (7)

Internal quantities belong to waveguide ports located at the

decomposition planes and external ports are ports of the

complete structure. Thus, the vectors iext(t) and vext(t)
embrace the port quantities which belong to the Next = 2
external TEM ports located at the HOM antenna tips:

iext(t) =

(
i1,1(t)
i5,1(t)

)

and vext(t) =

(
v1,1(t)
v5,1(t)

)

. (8)

It is crucial to note, that vectors holding the internal quan-

tities are organised such that quantities belonging to con-

nected ports are listed pairwise below each other. E.g. for

the connection between the left HOM coupler and the left

end cell (see Fig. 4) this reads as

iint(t) =

















i1,2(t)
i2,1(t)
i1,3(t)
i2,2(t)

...

i1,13(t)
i2,12(t)

...

















and vint(t) =

















v1,2(t)
v2,1(t)
v1,3(t)
v2,2(t)

...

v1,13(t)
v2,12(t)

...

















. (9)

By employment of the orthogonality of the permutation

matrix PT = P−1 the canonical quantities in (4) and (5)

are replaced by the sorted quantities:

∂

∂t
xd(t) = Ad xd(t) +BdP

︸ ︷︷ ︸

B̄d

isort(t), (10)

vsort(t) = PTBT
d

︸ ︷︷ ︸

B̄T

d

xd(t). (11)

To split these equations into internal and external quanti-

ties, the matrix B̄d is partitioned:

B̄d =
(
B̄d1 B̄d2

)
, (12)

Figure 4: Equivalent circuit diagram of the concatenation

between the left HOM coupler and the right end cell.

where B̄d1 has Nint = 96 columns and B̄d2 has Next = 2
columns. Utilizing this together with (10) and (11) leads to

∂

∂t
xd(t) = Ad xd(t) + B̄d1 iint(t) + B̄d2 iext(t), (13)

vint(t) = B̄T
d1 xd(t), (14)

vext(t) = B̄T
d2 xd(t). (15)

Obviously, (15) is the output equation of the concatenated

structure since it describes the relationship between the in-

ner states and the external voltages.

To derive the corresponding state equation of the con-

catenated structure, the following two requirements are

used. First, currents of terminals connected to each other

have the same magnitude but a different sign (see e.g.

i1,2(t) = −i2,1(t) or i1,3(t) = −i2,2(t) in Fig. 4). Second,

they are listed pairwise below each other. In consequence,

the Nint internal currents are expressed by

iint(t) = F îint(t), (16)

where

F = diag
((

1
−1

)
, . . . ,

(
1
−1

))

∈ R
Nint×Nint/2. (17)

The vector îint(t) ∈ R
Nint/2 contains the independent cur-

rents flowing through the coupled ports. Replacing (16)

in (13) yields

∂

∂t
xd(t) = Ad xd(t) + B̄d1F îint(t) + B̄d2 iext(t). (18)

The facts that voltages of connected terminals are equal

(see e.g. u1,2(t) = u2,1(t) or u1,3(t) = u2,2(t) in Fig. 4)

and that they are ordered below each other in vint(t) yields

FT vint(t) = FTB̄T
d1 xd(t) = 0. (19)

Multiplying (18) from left with FTB̄T
d1 gives

∂

∂t
FTB̄T

d1 xd(t)
︸ ︷︷ ︸

0

= 0 = FTB̄T
d1Ad xd(t)

+ FTB̄T
d1B̄d1F îint(t) + FTB̄T

d1B̄d2 iext(t)

(20)
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which is solved for the independent currents

îint(t) =−
[
FTB̄T

d1B̄d1F
]
−1

FTB̄T
d1Ad xd(t)

−
[
FTB̄T

d1B̄d1F
]
−1

FTB̄T
d1B̄d2 iext(t).

(21)

Substituting the internal currents in (18) leads to the state

equation of the concatenated structure

∂

∂t
xd(t) = K

[

Ad xd(t) + B̄d2 iext(t)
]

, (22)

with the idempotent and symmetric matrix

K =
[

I− B̄d1F
[
FTB̄T

d1B̄d1F
]
−1

FTB̄T
d1

]

. (23)

To delete Nint redundant states in xd(t), which result from

the algebraic side constraint (19), the orthonormal basis of

the kernel of FTB̄T
d1

Q = Ker
(

FTB̄T
d1

)

, with QTQ = I (24)

is determined. By substituting

xd(t) = KQxc(t) = Qxc(t) (25)

in (22) and (15) the redundant states vanish and a symme-

tric state space system of the concatenated structure is ob-

tained:

∂

∂t
xc(t) = QTKAdKQ

︸ ︷︷ ︸

Ac

xc(t) +QTKB̄d2
︸ ︷︷ ︸

Bc

iext(t), (26)

vext(t) = B̄T
d2KQ

︸ ︷︷ ︸

BT
c

xc(t). (27)

RESULTS

In the following subchapters different quantities are

computed by means of the created lumped model and are

compared with direct computations.

Scattering Parameters

The impedance formulation (26) and (27) can be easily

transferred to a scattering formulation assuming the exter-

nal port impedances to be constant [6]:

∂

∂t
xc(t) =

(

Ac −BcD
−1
Z BT

c

)

︸ ︷︷ ︸

Asc

xc(t)

+
√
2BcD

−
1

2

Z
︸ ︷︷ ︸

Bsc

a(t)

(28)

and

b(t) =
(√

2D
−

1

2

Z BT
c

)

︸ ︷︷ ︸

BT
sc

xc(t) +
(
− I

)

︸ ︷︷ ︸

Dsc

a(t), (29)

where the matrix DZ holds the constant port impedances

of the external ports on its main diagonal:

DZ = diag
(
Z1, Z2

)
. (30)

The corresponding frequency domain transfer function is

given by

b(jω) =

[

BT
sc

(

jω I−Asc

)
−1

Bsc +Dsc

]

︸ ︷︷ ︸

S(jω)

a(jω). (31)

This transfer function is commonly known as the S-matrix2

of the full structure. This matrix is evaluated in an interval

∆f = 3 . . . 8GHz on 1, 001 discrete frequency samples.

In contrast, the scattering properties of the complete struc-

ture are computed by means of a hexahedral discretization

(192, 456 mesh cells) in combination with the CST Mi-

crowave Studio R© Fast S-parameter Solver [8]. Fig. 5 and

Fig. 6 show the magnitude and the phase of the transmis-

sion between the external ports obtained by the concatena-

tion scheme and by the full calculation.

3 4 5 6 7 8
−120

−100

−80

−60

−40

−20

0

frequency / GHz

|s
1

2
(j

ω
)|

 /
 d

B

Figure 5: Absolute value of the transmission coefficient

from left to right HOM coupler obtained by the concate-

nation scheme (red) and by direct calculation (blue).

3 4 5 6 7 8

−3

−2

−1

0

1

2

3

frequency / GHz

ar
g
 s

1
2
(j

ω
) 

/ 
ra

d

Figure 6: Phase of the transmission coefficient from left to

right HOM coupler. The red curve is obtained by the con-

catenation scheme and the blue curve by direct calculation.

2In contrast to [2, 3] this matrix is not a priori sampled on discrete

frequency points but is available in terms of an analytic function [6].
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External Quality Factors

A typical quantity of interest in accelerator design is the

external quality factor of modes inside the cavity structure:

Qext,ν =
ωνWstored,ν

Pports,ν
. (32)

Here ων is the angular frequency of the ν-th mode,

Wstored,ν the energy stored in the ν-th mode and Pports,ν

the averaged loss power of the ν-th mode due to energy

propagation through the external ports. The external qual-

ity factor can be computed by the lumped model via

Qext,ν =
Im(λν)

2Re(λν)
, (33)

where λν are the eigenvalues of the scattering formula-

tion state matrix Asc. To benchmark the values computed

by the concatenation scheme in combination with the up-

per equations, the eigenmode solver of CST Microwave

Studio R© is used to directly calculate external quality fac-

tors of the complete structure. In Fig. 7 the comparison for

the modes in the interval ∆f is given.

3 4 5 6 7 8

10
0

10
2

10
4

10
6

frequency / GHz

Q
ex

t

Figure 7: External quality factors of the structure under

test in the interval ∆f . The red dots are computed by the

concatenation scheme, whereas the blue dots are computed

by a direct calculation.

Transient System Responses

Often in accelerator design the response of complex

structures due to different transient excitation signals is

of interest (e.g. for the analysis of field filling and defill-

ing processes). Once it is established, the state space sys-

tem (28) and (29) allows for the computation of these re-

sponses using ordinary differential equation (ODE) solvers.

Fig. 8 plots the transmitted signal at the right HOM coupler

of the example structure due to the sinusoidal excitation

a1(t) =
(

1− exp(−t/Tr)
)

sin(2πf0 t) (34)

at the left coupler, where f0 = 3.8976GHz and Tr = 1ns.
The red curve is obtained by the established lumped model

in combination with an ODE solver and the blue curve

is determined by the CST Microwave Studio R© transient

solver [8].

0 2 4 6 8 10

−0.1

−0.05

0

0.05

0.1

t / ns

b
2
(t

) 
/ 

√
W

Figure 8: Transmitted signals b2(t) observed in right cou-

pler due to excitation a1(t) at the left coupler. The red

curve is obtained by the lumped model, whereas the blue

curve is calculated with CST’s transient solver.

CONCLUSIONS

The actual contribution presents a proof of concept for

a method to create lumped equivalent models of complex

RF structures. Based on a set of 3D eigenmodes of sec-

tions of the decomposed structure, state space equations

are created. These equations are linked together to ob-

tain a lumped equivalent model of the complete structure.

This lumped model allows for the computation of complex

structure’s transfer function, transient system responses or

secondary quantities. The validation example given in

this paper shows that the model approximates the physical

properties of the full structure in a very reasonable manner.
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