SASE FELs
Paper Title Page
MOP079 On the Importance of Electron Beam Brightness in High Gain Free Electron Lasers 227
 
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Linear accelerators delivering high brightness electron beams are essential for driving short wavelength, high gain free-electron lasers (FELs). The FEL radiation output efficiency is often parametrized through the power gain length that relates FEL performance to the electron beam quality at the undulator. Experimental data and simulation results of existing and planned FEL facilities are used to explicit the relationship between the FEL output wavelength and the electron beam six-dimensional brightness*. Practical formulas are provided that show the dependence of the exponential gain length on the beam brightness**.
* S. Di Mitri, M. Cornacchia, Phys. Reports, 539 (2014) 1~48.
** S. Di Mitri, Photonics, 2 (2015) 317~341
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP081 Generating a Single-Spike SASE Pulse in the Soft X-Ray Regime by Velocity Bunching 233
 
  • J. Lee, B.H. Oh, M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  A bright ultrashort X-ray pulse emerges as a valuable tool for many fields of research nowadays. The single-spike operation of X-ray FEL is one way of making a bright ultrashort X-ray pulse. It requires extreme bunching and a magnetic chicane is a conventional compressor. In a low charge range, a magnetic chicane can be replaced by the velocity bunching technique. In this paper, we present the result of particle tracking simulation generating a single-spike soft X-ray SASE pulse without a magnetic chicane. We also investigate the error effects and show that this scheme is feasible under current technology.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP082 New Soft X-Ray Undulator Line Using 10 GeV Electron Beam in PAL-XFEL 237
 
  • C.H. Shim, I.S. Ko
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • Y.W. Parc
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  PAL-XFEL is designed to have five undulator lines and only two undulator lines, the HXR undulator line with 10 GeV electron beam and the SXR undulator line with 3.15 GeV electron beam, will be installed during phase I. A photon beam energy from 0.28 to 1.24 keV will be provided at the SXR undulator line and different range from 2 to 20 keV will be supplied at the HXR undulator line. According to existing schedule, however, photon beam energy from 1.24 to 2 keV won't be provided in PAL-XFEL. In this research, new soft X-ray undulator line for PAL-XFEL using 10 GeV electron beam in main linac is proposed to cover the vacant photon energy. Four candidates are evaluated by estimating and comparing FEL performances using Ming Xie's formula.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP083 FEL Operation Modes of the MAX IV Short Pulse Facility 241
 
  • A. Mak, F. Curbis, S. Werin
    MAX-lab, Lund, Sweden
 
  The Short Pulse Facility (SPF) of the MAX IV Laboratory in Lund, Sweden features the production of ultrashort, incoherent x-ray pulses. It is driven by a 3-GeV linac and comprises two 5-metre undulator modules. While the SPF is designed for spontaneous radiation, we explore alternative operation modes in which the SPF functions as a simple free-electron laser (FEL). In this article, we characterize two of them in time-dependent numerical simulations. We perform a sensitivity study on the electron beam parameters and examine the technique of single-step tapering.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUA01
Generating Femtosecond to Sub-Femtosecond X-Ray Pulses at Free-Electron Lasers  
 
  • Y. Ding
    SLAC, Menlo Park, California, USA
 
  Generation of high power, femtosecond to sub-femtosecond X-ray pulses is attracting much attention within the X-ray free-electron laser (FEL) user community. At the existing FEL facilities, such as the Linac Coherent Light Source at SLAC, low-charge operation mode and emittance-spoiling foil scheme have been developed to deliver sub-10 fs X-rays to user experiments. We recently performed extensive measurements on these two modes using the X-band transverse deflector diagnostic at LCLS, demonstrating a flexible pulse duration control with direct measurements. To achieve sub-fs X-ray pulses, a simple nonlinear compression mode has been recently developed with pulse duration about 200 as [1]. Experimental study of this sub-fs mode will be pursued in this year. We report the recent experimental studies for generating femtosecond to sub-fs x-ray pulses.
[1] S. Huang, Y. Ding, Z. Huang, and J. Qiang, Phys. Rev. ST Accel. Beams 17, 120703 (2014)
 
slides icon Slides TUA01 [2.922 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUA02 Suppression of FEL Lasing by a Seeded Microbunching Instability 289
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, G. Brenner, M. Dohlus, N. Ekanayake, T. Golz, T. Laarmann, T. Limberg, E. Schneidmiller, N. Stojanovic, M.V. Yurkov
    DESY, Hamburg, Germany
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4, and 05K13PE3 and the German Research Foundation programme graduate school GRK1355.
Collective effects and instabilities due to longitudinal space charge and coherent synchrotron radiation can degrade the quality of the ultra-relativistic, high-brightness electron bunches driving free-electron lasers (FELs). In this contribution, we demonstrate suppression of FEL lasing induced by a laser-triggered microbunching instability at the free-electron laser FLASH. The interaction between the electron bunches and the 800-nm laser pulses takes place in an undulator upstream of the FEL undulators. A significant decrease of XUV photon pulse energies has been observed in coincidence with the laser-electron overlap in the modulator. We discuss the underlying mechanisms based on longitudinal space charge amplification (LSCA) [E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel. Beams 13, 110701 (2010)] and present measurements.
 
slides icon Slides TUA02 [14.298 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUA03 Multi-beamline Operation Test at SACLA 293
 
  • T. Hara, T. Inagaki, R. Kinjo, C. Kondo, Y. Otake, H. Takebe, H. Tanaka, K. Togawa
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • K. Fukami
    JASRI/SPring-8, Hyogo-ken, Japan
 
  A new undulator beamline (BL2) was installed in September 2014 at SACLA. Following the installation of this second beamline, a DC switching magnet was replaced by a kicker magnet and a DC septum magnet for bunch-to-bunch multi-beamline operation. The commissioning of the new beamline and bunch-to-bunch operation was started early this year. Since SACLA has been operated with much higher peak currents around 10 kA compared to its original design value of 3 kA, the CSR effect in the beam transport line to BL2, where the electron beam is deflected twice by 3 degree, turns out to be non-negligible. BL2 is currently operated with reduced peak currents and the photon pulse energies of 100-150 μJ are obtained with increased undulator K-values around 2.6-2.85. Although the photon pulse energies of BL2 are still smaller than those of the existing beamline (BL3), the expected stability of the electron beam orbit after the bunch-to-bunch BL switching was achieved and simultaneous lasing at the two beamlines was demonstrated with 8 GeV electron beams. We will report the status and operational issues related to the multi-beamline operation at SACLA.  
slides icon Slides TUA03 [7.095 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUA04 First Simultaneous Operation of Two Sase Beamlines in FLASH 297
 
  • M. Scholz, B. Faatz, S. Schreiber, J. Zemella
    DESY, Hamburg, Germany
 
  FLASH2, the second undulator beamline of the FLASH FEL user facility at DESY (Hamburg, Germany) is under commissioning. Its first lasing was achieved in August 2014. FLASH is the first soft X-ray FEL operating two undulator beamlines simultaneously. Both undulator beamlines are driven by a common linear superconducting accelerator with a beam energy of up to 1.25 GeV. Fast kickers and a septum are installed to distribute one part of the electron bunch train to FLASH1 and the other part to FLASH2 with full repetition rate. The commissioning of FLASH2 takes place primarily in parallel to FLASH1 user operation. Various beam optics measurements has been carried out in order to ensure the required electron beam quality for efficient SASE generation. This paper reports the status of the FLASH2 commissioning.  
slides icon Slides TUA04 [9.655 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP019 Time Locking Options for the Soft X-Ray Beamline of SwissFEL 388
 
  • E. Prat, S. Reiche
    PSI, Villigen PSI, Switzerland
 
  SwissFEL is an FEL facility presently under construction at the Paul Scherrer institute that will serve two beamlines: Aramis, a hard X-ray beamline which is in construction phase and will provide FEL radiation in 2017 with a wavelength between 0.1 and 0.7 nm; and Athos, a soft X-ray beamline which is in design phase and it is expected to offer FEL light in 2021 for radiation wavelengths between 0.7 and 7 nm. A passive synchronization of the FEL signal to a laser source is fundamental for key experiments at Athos, such as the time-resolved resonant inelastic X-ray scattering (RIXS) experiments. In this paper we explore different options to achieve this time synchronization by means of energy modulating the electron beam with an external laser.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP020 Recent Study in iSASE 393
 
  • K. Fang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, USA
  • S. Hsu
    University of California, San Diego (UCSD), La Jolla, California, USA
 
  The Improved Self-Amplified Spontaneous Radiation (iSASE) scheme has potential to reduce SASE FEL bandwidth. This is achieved by repeatedly delaying the electrons with respect to the radiation pulse using phase shifters in the undulator break sections. It has been shown that the strength, locations and sequences of phase shifters are important to the iSASE performance. Particle swarm optimization algorithm is used to explore the phase shifters configuration space globally.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP021 Fundamental Limitations of the SASE FEL Photon Beam Pointing Stability 397
 
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  The radiation from SASE FEL has always limited value of the degree of transverse coherence. Two effects define the spatial coherence of the radiation: the mode competition effect, and the effect of poor longitudinal coherence. For the diffraction limited case we deal mainly with the effect of the poor longitudinal coherence leading to significant degradation of the spatial coherence in the post-saturation regime. When transverse size of the electron beam significantly exceeds diffraction limit, the mode competition effect does not provide the selection of the fundamental FEL mode, and spatial coherence degrades due to contribution of the higher azimuthal modes. Another consequence of this effect are fluctuations of the spot size and pointing stability of the photon beam. These fluctuations are fundamental and originate from the shot noise in the electron beam. The effect of pointing instability becomes more pronouncing for shorter wavelengths. Our study is devoted to the fundamental analysis of the effect and description of possible means for improving the degree of transverse coherence and the pointing stability.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP022 Photon Energies beyond the Selenium K-Edge at LCLS 630
 
  • F.-J. Decker, W.S. Colocho, Y. Ding, R.H. Iverson, H. Loos, J. Sheppard, H. Smith, J.L. Turner
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
The Linac Coherent Light Source (LCLS) was designed for a photon energies of 830 eV to 8.3 keV. This range was widened and up to 11.2 keV photons were already delivered for users. The Selenium K-edge at 12.6578 keV is very interesting since Selenium can replace Sulfur in biological structures and then that structure could be precisely measured. To reach this the electron energy would need to be raised by about 6% which initially didn't seem possible. The trick is to change the final compression scheme from a high correlated energy spread and moderate R56 in the compression chicane to moderate energy spread and high R56. The same bunch length can be achieved and RF energy is freed up, so the overall beam energy can be raised. Photons up to an energy of 12.82 keV (1.3% above the K-edge) with a pulse intensity of 0.93 mJ were achieved. The photon energy spread with this setup is wider at around 40-50 eV FWHM, since less correlated energy spread is left after the compression.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP023 Two Bunches with ns-Separation with LCLS 634
 
  • F.-J. Decker, S. Gilevich, Z. Huang, H. Loos, A. Marinelli, C.A. Stan, J.L. Turner, Z. Van Hoover, S. Vetter
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
The Linac Coherent Light Source (LCLS) delivers typically one bunch. Two bunches are interesting for pump / probe experiments. Two electron bunches with ps separation have been already produced using a split and delay in the laser which produces them on the gun cathode. Here we present the combination of two lasers with a combiner, this allows any time separation and is it limited to RF bucket spacing so far to about 40 ns limited by the setup of our beam containment system. Different beam energies were also provided and the most challenging part was a transverse separation of a few σs for the two beams. Although this setup was very jittery a successful user experiment was accomplished.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)