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Abstract
The quantum regime of the FEL in a single-mode, single-

particle approximation is characterized by a two-level be-

haviour of the center-of-mass motion of the electrons. We

extend this model to include all modes of the radiation field

and analyze the effect of spontaneous emission. In partic-

ular, we investigate this scattering mechanism to derive ex-

perimental conditions for realizing an FEL in the quantum

regime.

INTRODUCTION
In [1] the existence of the so-called quantum regime of

the FEL was predicted and in [2] a quantum optics approach

to the Quantum FEL (QFEL) was developed. Before we

extend our model of the QFEL to a multi-mode theory, we

briefly recapitulate its essential ingredients.

We start with the Hamiltonian of the FEL, i.e. an electron

of mass m and charge e coupled to a single mode of the
radiation field of frequency ω by the wiggler of amplitude
AW . This Hamiltonian expressed in the Bambini-Renieri

frame [3], which is a comoving non-relativistic frame of

reference reads [4] in the interaction picture

Ĥ ≡ �gâ†L e
−2ik ẑ e−iΔ̂( p̂)t +h.c. . (1)

p

E

q = 2�k

2q = 4�k

qq/2−q/2−q

Figure 1: Momentum-energy parabola of the electron, that is

E = E(p). Only resonant photon transitions are of interest,
the off-resonant ones can be neglected. Higher order photon

transitions are on resonance as well, but they are suppressed

by the quantum parameter α, defined by Eq. (5).

The coupling constant [2]

g ≡ e2

�m

√
�

2ε0Vω
AW , (2)

with the quantization volume V , Planck’s constant �, and the
vacuum permittivity ε0 couples the photon creation operator
â†L to the center-of-mass motion of the electron represented
by the position and momentum operator, ẑ and p̂, respec-
tively, where the detuning

Δ̂ (p̂) ≡ p̂ (2k/m) − ωr (3)

contains the recoil frequency ωr ≡ q2/2m�. The operator
exp [−2ik ẑ] shifts the electron momentum by the recoil

q ≡ 2�k (4)

determined by the wave number k.
At this point the Hamiltonian is exact for a strong classical

wiggler field. In the classical regime the electron recoil is a

negligible quantity, whereas in the quantum domain it enters

in a crucial way into the detuning, which suppresses off-

resonant photon transitions. This effect is illustrated in Fig. 1

where the initial and final momentum on the energy parabola

are on resonance. For a single photon exchange, only the

momentum states|q/2〉 and |−q/2〉 are on resonance.
Higher-order photon transitions, as seen in Fig. 1, are

on resonance for higher momenta as well. However, it has

been shown in [2] that a j-photon transition with j > 1 is
proportional to α j where

α ≡ g
√

n + 1
ωr

(5)

is the quantum parameter and n the photon number.
For α � 1 only the single-photon transition remains,

while higher-order transitions are suppressed. This feature

represents the main criterion for the QFEL and the momen-

tum states |±q/2〉 undergo a Rabi oscillation with the fre-
quency

Ω ≡ g
√

n + 1 . (6)

This frequency determines the timescale on which a QFEL

is operational, and will play a key role in our considerations.
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MULTI-MODE HAMILTONIAN
Since a QFEL behaves very much like a two-level system,

a natural assumption is that spontaneous emission will also

occur similar to that of a two-level atom [5], rather than to

spontaneous undulator radiation in a classical FEL . Hence,

we expect the probability P (p0; t) to find the electron in
its initial momentum state |p0〉 to decay exponentially as a
function of time, that is

P (p0; t) = e−Γt P (p0; 0) . (7)

Our goal is to find an expression for the decay constant

Γ. In order to do so, we extend the Hamiltonian, Eq. (1),

and couple a single electron to all modes. The resulting

Hamiltonian then reads [6]

Ĥsp ≡
∑
j,λ

(
e∗j,λ · eW

) (
�gj
)

â†j e
− i
�
q j ·r̂ e−iΔ̂ j ( p̂)t

+ h.c. , (8)

where e j,λ and eW denote the polarization vectors of the

mode of the radiation field characterized by the mode in-

dices j and λ, and of the wiggler field, respectively, and the
coupling constant gj between the electron and the jth mode.
The Hamiltonian Ĥsp differs from Ĥ, Eq. (1), by the

interaction of the electron with all modes, manifesting itself

in a sum over all modes, and subsequently by the sum over

all possible polarizations for each mode. The recoil

q j ≡ �
(
k j − kW

)
(9)

depends, in contrast to Eq. (4), on the wave vectors k j of the

jth mode and kW of the wiggler. Moreover, the detuning

Δ̂ j ( p̂) ≡ p̂ · q j

�m
−

q2j

2m�
−
(
ω j − ω

)
(10)

is now a slightly more complicated operator with the fre-

quency ω j of the jth mode.
Since in the one-mode Hamiltonian, Eq. (1), the angles

in Δ̂ j between p and q j only take on the values 0 or π it
corresponds to one space dimension Eq. (3). This restriction

is no longer true for Eq. (8) and we have to take into account

the directions of the involved wave vectors. The expression

for the detuning is now dependent not only on the absolute

value of the electron momentum, but also on its direction as

well as the wave vectors k j of all modes.

In order to find a resonance condition, we now simplify

Eq. (10) significantly. The initial momentum is aligned

with the z-axis, i.e. p0 ≡ (q/2) ez = (�ω/c) ez to match
the excited state of the QFEL, as discussed in the first sec-

tion. When we apply the detuning operator Δ̂ ( p̂) defined by
Eq. (10) onto the initial momentum state, we find,

Δ̂ j ( p̂) |p0〉 =
{
�

mc2
[
ω
(
ω j cos δ − ω

)

−
(
ω j − ω

)2] − (ω j − ω
)}
|p0〉 , (11)

pz− q
2

0q′ q′′ q
2

Figure 2: Additional resonances in the quantum regime of

the FEL due to the presence of a reservoir. Whereas in Fig. 1

there is only a single resonance between |±q/2〉 remaining,
with a reservoir any transition where the projection on the

z-axis of the electron momentum p′ ≡ p − q j lies within

±q/2 is possible.

where δ denotes the angle between q and k j .

The term associated with the square brackets scales with

�ω/mc2 � 1 and can therefore be neglected, which means

that the frequency difference
(
ω j − ω

)
between mode and

wiggler will determine the resonance condition. We recall

that in Eq. (1) the electron momentum p determines the de-
tuning and the frequency difference in the detuning vanishes

due to only a single mode being present. This is no longer

the case when many modes are relevant and it is indeed this

frequency difference that dictates the resonance condition.

We can therefore make the approximation

e−iΔ̂ j ( p̂)t |p〉 � ei(ω j−ω)t |p〉 . (12)

These additional resonances can be seen in Fig. 2. Once

the electron has spontaneously emitted a photon and has

therefore a new momentum p′, then there is another mode
on resonance due to Eq. (12), and the electron can sponta-

neously emit another photon, and so on. Indeed, the electron

can spontaneously emit an infinite amount of photons since

the wiggler, which we consider to be a classically device, is

an external field.

When we now try to find the expression for the decay

constant Γ the resulting differential equations will not de-

couple due to this cascade. We therefore have to find the

point where this photon cascade stops.

PHOTON CASCADE
In order to cope with this problem we recall the relevant

timescale of the QFEL as well as the condition for the strong

coupling regime. For optimal gain the electron has to spend

a time τ in the wiggler that allows for half of a Rabi cycle,
that is

Ωτ =
π

2
. (13)

In a conventional atom-reservoir interaction, we have for

the strong-coupling regime the condition [7]

Γ

g
√

n + 1
� 1 , (14)
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which yields with Eqs. (6) and (13) the inequality

Γτ � 1 . (15)

Next we introduce the probability N� for an electron to

spontaneously emit 	 photons. The initial condition is that
at t = 0 there are only electrons with momentum q/2. When

they are coupled to a reservoir, N0 decays exponentially

while N��0 is increasing. For example, for a two-level atom,

denoted with Ñ� , with the decay constant Γat we find [6]

Ñ0(t) = e−Γat t N0(0) ≈ (1 − Γat t) N0(0) (16)

Ñ1(t) =
(
1 − e−Γat t

)
N0(0) ≈ (Γat t) N0(0) (17)

where we have used the condition Eq. (14) for the strong

coupling regime.

Since we are interested in more than a single spontaneous

emission process, we now examine two subsequent sponta-

neous emission processes of the same electron. The respec-

tive set of differential equations read

Ṅ0(t) = −ΓN0 (t) (18)

Ṅ1 (t) = +ΓN0 (t) − ΓN1 (t) (19)

Ṅ2 (t) = +ΓN1 (t) . (20)

Here we have assumed that the decay constant Γ is equal

for all scattering events, which is reasonable since Γ, as we

will show later, depends on the resonance condition which

is independent on the electron momentum Eq. (12).

This set of equations is easily solved and with Eq. (15)

we have exp [−Γτ] ≈ 1 − Γτ, and thus the solution reads
N0(t) ≈ (1 − Γτ) N0(0) (21)

N1(t) ≈ [1 − (Γτ)] (Γτ) N0(0) ≈ (Γτ) N0(0) (22)

N2(t) ≈ (Γτ)2 N0(0) ≈ 0 . (23)

In comparison to Eqs. (16) and (17) we note only a small

difference of the order of Γτ which is not relevant on the
timescale of our problem. This feature can be seen in Fig. 3

where the quantities N0,N1,N2 are solved exactly and are

plotted in comparison to the Rabi oscillations. The differ-

ence to Ñ1, Eq. (17), which represents only one sponta-

neously emitted photon does not matter until the first full

Rabi cycle, but by that time the electron has already left

the wiggler. We therefore conclude that we can neglect all

further spontaneous emissions once the electron has emitted

a photon. This behavior coincides perfectly with the two-

level dynamics of the QFEL since in the quantum regime

the electron can only emit a single photon.

DECAY CONSTANT: EXPLICIT FORM
With this information we now address the Schrödinger

equation for the QFEL in the presence of a reservoir. The

state vector |Ψ(t)〉 contains the electronmomentum p as well
as all possible photon numbers {n} of all modes denoted by
curly brackets, and reads

|Ψ(t)〉 ≡
∫

dp′
∑
n

c
(
p′, {n} ; t) ��p′, {n}〉 (24)

0 1 2 3 4 5 6 7 8
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t/(2πΩ)
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0
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Ωt
N0(t)
Ñ1(t)
N1(t)
N2(t)

Figure 3: Timescale of the random scattering in the QFEL

together with the corresponding Rabi oscillations for com-

parison. The value of the decay constant Γ was set to 1%

of g
√

n + 1, giving rise to the strong coupling regime. The
quantity Ñ1(t)represents only a single scattering event and
is the counterpart of the decay of a two-level atom.

Since we want to connect this state vector to Eq. (7) we

calculate

P (p0; t) = ��c (�kW ez , {0} ; t) ��2 . (25)

With the Hamiltonian, Eq. (8), the simplified detuning,

Eq. (12) as well as the results Eqs. (17), (22) and (23) from

the third section we arrive at the set of differential equations

ċ
(
�kW ez , {0} ; t) = − i∑

j,λ

(
eW · e∗j,λ

)
gj e

i(ω j−ω)t

× c
(
�kW ez − q j , {1} j ; t

)
(26)

ċ
(
�kW ez − q j , {1} j ; t

)
= − i

(
e∗W · e j,λ

)
gj e

−i(ω j−ω)t

× c
(
�kW ez , {0} ; t) (27)

which can be solved by formally integrating Eq. (27) and

substituting it into Eq. (26). The integral over time will

result in a Dirac delta function that allows us to evaluate the

sum. The resulting differential equation reads [7]

ċ (p0, {0} ; t) = 2πg2 (ω) D (ω) c (p0, {0} ; t) (28)

with the mode density D (ω) ≡ ω2/
(
π2c3
)
of the electro-

magnetic field [7].

The coupling constant g, defined inEq. (2), and the classi-

cal electron radius [8]

re ≡ e2

4πε0mc2
(29)

together with the reduced Compton wavelength [8]

� ≡ �
mc

(30)
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allows us to express Eq. (28) as

ċ (p0, {0} ; t) = −2
3

re
�

a20ω · c (p0, {0} ; t) (31)

with the wiggler parameter [2]

a0 ≡
√
2e

mc
AW . (32)

Hence, we finally obtain the explicit expression

Γ ≡ 1

3

re
�

a20ω (33)

for the decay constant appearing in Eq. (7).

DECAY CONSTANT: ESTIMATES
Expression Eq. (33) suggests that we can tune the decay

rate Γ by the wiggler parameter a0. In order to have a low
decay the QFEL is best operational with

a0 < 1 . (34)

Moreover, we have to ensure that we are in the strong cou-

pling regime, that is the approximations from the third sec-

tion hold true. Since Γ = Γ(a0,ω) and g = g(α,ω) we can
directly calculate this ratio which reads

Γ

g
√

n + 1
=

a2
0

α

1

ω
· 8.3 × 1015 1

s
. (35)

However, we have to keep in mind that this ratio is still

expressed in the Bambini-Renieri frame. We now connect

this condition to the quantities in the laboratory frame and

recall the transformation [3]

ω =
2πc√
λLλW

. (36)

of the resonance frequency to the laboratory system with the

wiggler and laser wavelength, λW and λL , respectively.
The latter one is given by the identity [9]

λL =
λW

2γ2

(
1 + a20

)
(37)

with the Lorentz factor

γ =
E

mc2
, (38)

which is determined by the electron energy E.
Whenwe now combine Eqs. (36), (37) and (38) in Eq. (35)

and evaluate all constants of nature we arrive at the condition

χ ≡ a20

√
1 + a2

0

λW
E

� α14.5 mm
GeV

(39)

for the QFEL being in the strong coupling regime.

We compare the condition Eq. (39) in Table 1 for three

FELs and see that none of them can fulfill it even for α � 1.

For an electron accelerator operating in the GeV regime,

one does need at least a wiggler wavelength in the order of

micrometers.

Table 1: The parameter χ defined by Eq. (39) providing
the condition for a strong coupling regime of the QFEL

for the FEL ELBE [10] at the HZDR as well as for the

LCSL [11] at Stanford University. If χ exceeds the value of
α14.5mm/GeV with α � 1, the coupling to the reservoir is

too strong. The parameters a0 and λW have been set to their

possible minimum values and E to its possible maximum.

Even if these devices are capable of reaching the quantum

regime, none of them succeed at operating in the strong

coupling regime.

FEL χ in [mm/GeV]

ELBE U27 75.4
ELBE U100 82.2

LCLS 110.6

SUMMARY
In our previous model [2, 4] the ratio of the coupling

constant g and the recoil frequency ωr , i.e. the quantum

parameter α, has served as the condition for the quantum
regime of the FEL.

We are now in the position to incorporate decoherence

due to a reservoir reflecting spontaneous emission as well.

This extension has allowed us to derive a condition under

which one does not only reach the quantum regime, but also

the strong coupling regime of the QFEL which is best suited

for a stable laser output.
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