Keyword: injection
Paper Title Other Keywords Page
MOCO01 Online Touschek Beam Lifetime Measurement Based on the Precise Bunch-By-Bunch Beam Charge Monitor SRF, storage-ring, electron, software 36
 
  • B. Gao, F.Z. Chen, Y.B. Leng
    SSRF, Shanghai, People’s Republic of China
  • Y.M. Zhou
    SINAP, Shanghai, People’s Republic of China
 
  Beam current and lifetime are the most important parameters to characterize the beam and machine quality of an electron storage ring. In order to describe the behavior of all electron bunches completely and accurately, a precisely bunch-by-bunch charge monitor has been developed at SSRF. Method called two-point equilibrium sampling is introduced to avoid the influence of longitudinal oscillation on the sampling point, thanks to this, the resolution of the BCM was below 0.2 pC. Utilizing the advantages of BCM’s high refresh rate and high resolution, the system can meet the requirement of monitor the bunch-by-bunch beam lifetime, measure touschek lifetime and vacuum lifetime. In this paper, experiments and and analysis will be described in detail.  
slides icon Slides MOCO01 [18.156 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOCO01  
About • paper received ※ 03 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP002 Current Per Bunch Distribution Measurement at ESRF SRF, data-analysis, ECR, controls 59
 
  • L. Torino, B. Roche, B. Vedder
    ESRF, Grenoble, France
 
  During the last run of the ESRF machine, several instrumentation improvements have been carried out in order to be exported on the new EBS storage ring. In particular, the top-up operation mode has been implemented and it demanded for an accurate, fast, and reliable measurement of the current per bunch distribution. In this proceeding, we describe the characteristics and the performance of the setup chosen to perform this measurement, which consists in a stripline, connected with a high dynamic range oscilloscope and a dedicated data analysis. We also comment on the integration of the measurement in the top-up routine to selectively refill less populated bunches.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP002  
About • paper received ※ 03 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP011 A Dual Functional Current Monitor for Stripping Efficiency Measurement in CSNS electronics, electron, proton, shielding 96
 
  • W.L. Huang, F. Li, R.Y. Qiu, A.X. Wang
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • M.Y. Huang, M.Y. Liu, T.G. Xu
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work is supported by National Natural Science Fund(No.11605214).
China Spallation Neutron Source (CSNS), the biggest platform for neutron scattering research in China, has been finished construction and already in user operation stage by the end of 2017. During the multi-turn charge-exchange injection, H stripping by a carbon primary stripper foil (100 ¿g/cm2) and a secondary stripper foil (200 ¿g/cm2) is adopted for this high intensity proton synchrotron. In order to evaluate the stripping efficiency and the foil aging, a dual-function low noise current transformer and corresponding electronics are designed to measure the ultra-low intensity of H and H0, which are not stripped completely by the 1st foil but totally stripped charge changing to H+ and delivered to the IN-DUMP. The self-designed CT sensors made of domestic nanocrystalline toroids, the noise analysis and elimination, measurement results and further improvement proposals are presented in this paper.
 
poster icon Poster MOPP011 [3.186 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP011  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP017 New Beam Loss Monitor System at SOLEIL detector, storage-ring, electron, electronics 118
 
  • N. Hubert, M. El Ajjouri, D. Pédeau
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL is currently upgrading its Beam Loss Monitor (BLM) system from pin-diode detectors to plastic scintillators associated with photosensor modules. This new kind of monitor, associated to its dedicated electronics, can be used to record slow or fast losses. Monitors have been calibrated with a diode and with a Cesium source. Both methods are compared. After preliminary tests, a first set of 20 new BLMs have been installed on 2 cells of the storage ring. Installation setup, calibration procedure and first measurements will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP017  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP045 MAX IV Operations - Diagnostic Tools and Lessons Learned storage-ring, operation, synchrotron, status 209
 
  • B. Meirose, V. Abelin, B.E. Bolling, M. Brandin, R. Høier, A. Johansson, P. Lilja, J.S. Lundquist, S. Molloy, F. Persson, J.E. Petersson, R. Svärd
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  In this contribution, I present some of the new beam diagnostic and monitoring tools developed by the MAX IV Operations Group. In particular, new BPM and accelerator tunes visualization tools and other simple but useful applications we have developed, such as our RF System Monitor, are presented. I also briefly share our experience with the development of audible alarms, which help operators monitor various parameters of the machine and explain how the implementation of all these tools have improved accelerator operations at MAX IV.  
poster icon Poster MOPP045 [2.879 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP045  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAO03 Beam Loss Measurements Using the Cherenkov Effect in Optical Fiber for the BINP ee+ Injection Complex electron, extraction, radiation, beam-losses 233
 
  • Yu.I. Maltseva, A.R. Frolov, V.G. Prisekin
    BINP SB RAS, Novosibirsk, Russia
 
  Optical fiber based beam loss monitor (OFBLM) has been developed for the 500 MeV BINP Injection Complex (IC). Such monitor is useful for accelerator commissioning and beam alignment, and allows real-time monitoring of ee+ beam loss position and intensity. Single optical fiber (OF) section can cover the entire accelerator instead of using a large number of local beam loss monitors. In this paper brief OFBLM selection in comparison with other distributed loss monitors was given. Methods to improve monitor spatial resolution are discussed. By selecting 45 m long silica fiber (with a large core of 550 um) and microchannel plate photomultiplier (MCP-PMT), less than 1 m spatial resolution can be achieved.  
slides icon Slides TUAO03 [3.053 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUAO03  
About • paper received ※ 05 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP018 Synchrotron Radiation Monitor for SuperKEKB Damping Ring in Phase-III Operation damping, operation, positron, MMI 336
 
  • H. Ikeda, J.W. Flanagan, H. Fukuma, H. Sugimoto, M. Tobiyama
    KEK, Ibaraki, Japan
 
  The SuperKEKB damping ring (DR) commissioned in March 2019, before main ring (MR) Phase-III operation. The design luminosity of SuperKEKB is 40 times that of KEKB with high current and low emittance. We constructed the DR in order to deliver a low-emittance positron beam. A synchrotron radiation monitor (SRM) was installed for beam diagnostics at the DR. Streak camera and gated camera were used for measurement of the damping time and the beam size. This paper shows the design of DR SRM and the result of the measurement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP018  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP022 Development of the Calculation Method of Injection Beam Trajectory of RIKEN AVF Cyclotron with 4D Emittance Measured by the Developed Pepper-Pot Emittance Monitor emittance, cyclotron, space-charge, ECR 351
 
  • Y. Kotaka, N. Imai, Y. Ohshiro, Y. Sakemi, S. Shimoura, H. Yamaguchi
    CNS, Saitama, Japan
  • A. Goto, M. Kase, T. Nagatomo, T. Nakagawa, J. Ohnishi
    RIKEN Nishina Center, Wako, Japan
  • K. Hatanaka
    RCNP, Osaka, Japan
  • H. Muto
    Suwa University of Science, Chino, Nagano, Japan
 
  The Center for Nuclear Study, the University of Tokyo and RIKEN Nishina Center have been developing the AVF Cyclotron system at RIKEN. One of the important developments is to improve the transport system of the injection beam line. The transport efficiencies tend to decrease as beam intensities increase. To solve this problem, we developed the calculation method to trace a beam trajectory with a four-dimensional (4D) beam emittance measured by pepper-pot emittance monitor (PEM) as initial value. The reason for using the 4D beam emittance is that the transport system has rotating quadrupole magnets and solenoid coils, and that the space charge effect can be introduced. The beams through a pepper-pot mask can be detected on the potassium bromide fluorescent plate inclined 45 degree to the beam to be recorded by digital camera using developed PEM. We compared the calculated beam trajectory with the measurement of other beam diagnostics and quantified the degree of fit. It has been found that the degree of fit is improved by changing fiducial points on the fluorescent plate and optimizing the thickness of the fluorescent agent and the exposure time and gain of the digital camera.  
poster icon Poster TUPP022 [2.306 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP022  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP023 Two-dimensional Beam Profile Monitor for Alpha Emitter electron, target, dipole, beam-transport 355
 
  • K.S. Tanaka, K. Harada, M. Itoh, H. Kawamura, A. Terakawa, A. Uchiyama
    CYRIC, Sendai, Japan
  • T. Hayamizu, H. Nagahama, N. Ozawa, Y. Sakemi
    CNS, Saitama, Japan
 
  We developed two-dimensional beam profile monitors for alpha-emitters along with other larger number of ions to measure the permanent electric dipole moment of the electron using francium atoms at CYRIC in Tohoku university. Francium is produced by the fusion reaction between the oxygen beam from the cyclotron accelerator and gold target, and a far larger number of other ions such as fold or potassium are also emitted from the target. Thus it was difficult to measure the beam profile of francium hidden by these ions. We installed two beam profile monitor consisted of the micro-channel plate and phosphor screen. If we stop the beam after the beam injection to the monitor in sufficient time, we can only observe the fluorescence of the alpha particle emitted by francium atoms on the surface of the plates. By using this monitoring system, we improved the beam transport efficiency by several times and improved beam purity of francium with Wien filter.  
poster icon Poster TUPP023 [185.216 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP023  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP024 Development of a Beam Induced Fluorescence Monitor for Non-Destructively Profiling MW Proton Beam at the J-PARC Neutrino Beamline photon, proton, vacuum, simulation 358
 
  • S.V. Cao, M.L. Friend, K. Sakashita
    KEK, Tsukuba, Japan
  • M. Hartz
    Kavli IPMU, Kashiwa, Japan
  • A. Nakamura
    Okayama University, Okayama, Japan
 
  A Beam Induced Fluorescence (BIF) monitor is under development for non-destructively monitoring the future MW-power proton beam at the neutrino extraction beamline at J-PARC. The §I{30}{GeV} protons are bombarded onto a graphite target, producing one of the most intense neutrino beams in the world for the Tokai-to-Kamioka (T2K) long-baseline neutrino oscillation experiment, where beam profile monitoring is essential for protecting beamline equipment and understanding the neutrino flux. For the BIF monitor, gas is injected into the beam pipe and the spatial distribution of the fluorescence light induced by proton-gas interactions is measured, allowing us to continuously and non-destructively monitor the proton beam profile. However, the specifications of the beamline require us to carefully control the gas localization by pulsed injection. Radiation hardness of all monitor components and profile distortion caused by space charge effects must also be considered. We will show how to address these challenges and realize a working prototype.  
poster icon Poster TUPP024 [8.094 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP024  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP040 Digital Cameras for Photon Diagnostics at the Advanced Photon Source controls, damping, detector, diagnostics 425
 
  • K.P. Wootton, N.D. Arnold, W. Berg, T. Fors, N. Sereno, H. Shang, G. Shen, S.E. Shoaf, B.X. Yang
    ANL, Lemont, Illinois, USA
 
  Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Cameras can be a very useful accelerator diagnostic, particularly because an image of the beam distribution can be quickly interpreted by human operators, and increasingly can serve as an input to machine learning algorithms. We present an implementation of digital cameras for triggered photon diagnostics at the Advanced Photon Source using the areaDetector framework in the Experimental Physics and Industrial Controls System. Beam size measurements from the synchrotron light monitors in the Particle Accumulator Ring using the new architecture are presented.
 
poster icon Poster TUPP040 [0.708 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP040  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP017 Current Monitor and Beam Position Monitor Performance for High Charge Operation of the Advanced Photon Source Particle Accumulator Ring electron, electronics, extraction, accumulation 552
 
  • A.R. Brill, J.R. Calvey, K.C. Harkay, R.T. Keane, N. Sereno, U. Wienands, K.P. Wootton, C. Yao
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
A design choice for the Advanced Photon Source Upgrade to inject into the storage ring using bunch swap out rather than off-axis accumulation means that the Advanced Photon Source injectors are required to accelerate much higher electron bunch charge than originally designed. In the present work, we outline upgrades to the current monitor and beam position monitor diagnostics for the Particle Accumulator Ring to accommodate bunch charges of 1-20 nC. Through experiments, we compare and characterize the system responses over the range of bunch charge.
 
poster icon Poster WEPP017 [3.163 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP017  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP021 Machine Learning Image Processing Technology Application in Bunch Longitudinal Phase Data Information Extraction network, damping, synchrotron, SRF 568
 
  • X.Y. Xu, Y.M. Zhou
    SINAP, Shanghai, People’s Republic of China
  • Y.B. Leng, Y.M. Zhou
    SSRF, Shanghai, People’s Republic of China
  • X.Y. Xu
    University of Chinese Academy of Sciences, Beijing, People’s Republic of China
 
  To achieve the bunch-by-bunch longitudinal phase measurement, Shanghai Synchrotron Radiation Facility (SSRF) has developed a high resolution measurement system. We used this measurement system to study the injection transient process, and obtained the longitudinal phase of the refilled bunch and the longitudinal phase of the original stored bunch. A large number of parameters of the synchronous damping oscillation are included in this large amount of longitudinal phase data, which are important for the evaluation of machine state and bunch stability. The multi-turn phase data of a multi-bunch is a large two-dimensional array that can be converted into an image. The convolutional neural network (CNN) is a machine learning model with strong capabilities in image processing. We hope to use the convolutional neural network to process the longitudinal phase two-dimensional array data, and extract important parameters such as the oscillation amplitude and the synchrotron damping time.  
poster icon Poster WEPP021 [1.292 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP021  
About • paper received ※ 23 August 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP034 Optics-Measurement-Based BPM Calibration optics, factory, collider, dipole 610
 
  • A. García-Tabarés Valdivieso, R. Tomás
    CERN, Geneva, Switzerland
 
  Beam position monitors (BPMs) are key elements in accelerator operation, providing essential information about different beam parameters that are directly related to the accelerator performance. In order to obtain an accurate conversion from an induced voltage to the center of charge position, the BPMs have to be calibrated prior to its installation in the accelerator. This calibration procedure can only be performed when the accelerator is in a period of non-activity and does not completely reproduce the exact conditions that occur during the machine operation. Discrepancies observed during the optics measurements at the Large Hadron Collider and the Proton Synchrotron Booster show that the impact of the BPM calibration factors on the optics functions was greater than expected from the design values and tolerances. Measurement of the optics functions allows obtaining extra information on BPM calibration together with its associated uncertainty and resolution. The optics measurement based calibration allows further developing new techniques for computing optics functions that are biased by a possible miss-calibration such as beta function, dispersion function and beam action.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP034  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP035 Using Tune Measurement Systems Based on Diode Detectors for Quadrupolar Beam Oscillation Analysis in the Frequency Domain operation, betatron, detector, pick-up 615
 
  • M. Gąsior, T.E. Levens
    CERN, Geneva, Switzerland
 
  Requirements for diagnostics of injection matching and beam space charge effects have driven studies at CERN using high sensitivity tune measurement systems based on diode detectors for the observation of quadrupolar beam oscillations in the frequency domain. This has led to an extension of such tune systems to include a channel optimised for quadrupolar oscillation measurements. This paper presents the principles of such measurements, the developed hardware and example measurements.  
poster icon Poster WEPP035 [29.814 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP035  
About • paper received ※ 03 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)