Keyword: shielding
Paper Title Other Keywords Page
MOPP008 First Measurements of a New Type of Coreless Cryogenic Current Comparators (4C) for Non-Destructive Intensity Diagnostics of Charged Particles pick-up, cryogenics, niobium, coupling 82
 
  • V. Tympel, T. Stöhlker
    HIJ, Jena, Germany
  • S. Anders, J. Kunert, M. Schmelz, R. Stolz, V. Zakosarenko
    IPHT, Jena, Germany
  • H. De Gersem, N. Marsic, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • J. Golm, F. Schmidl, T. Schönau, P. Seidel, M. Stapelfeld
    FSU Jena, Jena, Germany
  • D.M. Haider, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • J. Tan
    CERN, Geneva, Switzerland
  • V. Zakosarenko
    Supracon AG, Jena, Germany
 
  Funding: Supported by the BMBF, project numbers 05P15SJRBA, 05P18RDRB1 and 05P18SJRB1.
The non-destructive and highly sensitive measurement of a charged particle beam is of utmost importance for modern particle accelerator facilities. A Cryogenic Current Comparator (CCC) can be used to measure beam currents in the nA-range. Therein, charged particles passing through a superconducting toroid induce screening currents at the surface of the toroid, which are measured via SQUIDs. Classical CCC beam monitors make use of a high magnetic permeability core as a flux-concentrator for the pickup coil. The core increases the pickup inductance and thus coupling to the beam, but unfortunately also raises low-frequency noise and thermal drift. In the new concept from the Leibniz Institute of Photonic Technology the Coreless Cryogenic Current Comparator (4C) completely omits this core and instead uses highly sensitive SQUIDs featuring sub-micron cross-type Josephson tunnel junctions. Combined with a new shielding geometry a compact and comparably lightweight design has been developed, which exhibits a current sensitivity of about 6 pA/sqrt(Hz) in the white noise region and a measured shielding factor of about 134 dB*.
* V. Zakosarenko et al., Coreless SQUID-based cryogenic current comparator for non-destructive intensity diagnostics of charged particle beams, Supercond. Sci. Technol. 32 (2019) 014002.
 
poster icon Poster MOPP008 [13.550 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP008  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPP011 A Dual Functional Current Monitor for Stripping Efficiency Measurement in CSNS electronics, electron, injection, proton 96
 
  • W.L. Huang, F. Li, R.Y. Qiu, A.X. Wang
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • M.Y. Huang, M.Y. Liu, T.G. Xu
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work is supported by National Natural Science Fund(No.11605214).
China Spallation Neutron Source (CSNS), the biggest platform for neutron scattering research in China, has been finished construction and already in user operation stage by the end of 2017. During the multi-turn charge-exchange injection, H stripping by a carbon primary stripper foil (100 ¿g/cm2) and a secondary stripper foil (200 ¿g/cm2) is adopted for this high intensity proton synchrotron. In order to evaluate the stripping efficiency and the foil aging, a dual-function low noise current transformer and corresponding electronics are designed to measure the ultra-low intensity of H and H0, which are not stripped completely by the 1st foil but totally stripped charge changing to H+ and delivered to the IN-DUMP. The self-designed CT sensors made of domestic nanocrystalline toroids, the noise analysis and elimination, measurement results and further improvement proposals are presented in this paper.
 
poster icon Poster MOPP011 [3.186 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP011  
About • paper received ※ 04 September 2019       paper accepted ※ 08 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP035 Development of Modular Spare Parts for the Profile and Position Monitors of the 590 MeV Beam Line at HIPA vacuum, pick-up, simulation, target 402
 
  • R. Dölling, D.C. Kiselev, F. Marcellini, K.M. Zehnder
    PSI, Villigen PSI, Switzerland
  • D. Berisha, J. Germanovic, K.M. Zehnder
    ABBTS, Baden, Switzerland
 
  A new generation of monitor plugs is under development for the ageing wire profile monitors and beam position monitors which are inserted into massive shielding of the 590 MeV proton beam line at HIPA. The modular mechanical design, aspects of handling, vacuum compatibility, radiation hardness, shielding, cabling and monitor environment are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP035  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)