Keyword: beam-losses
Paper Title Other Keywords Page
TUAO01 Beam Diagnostics for Studying Beam Losses in the LHC detector, proton, collimation, feedback 222
 
  • B. Salvachua
    CERN, Meyrin, Switzerland
 
  The LHC is well covered in terms of beam loss instrumentation. Close to 4000 ionisation chambers are installed to measure global beam losses all around the LHC ring, and diamond detectors are placed at specific locations to measure bunch-by-bunch losses. Combining the information of these loss detectors with that from additional instrumentation, such as current transformers, allows for enhanced understanding and control of losses. This includes a fast and reliable beam lifetime calculation, the identification of the main origin of the loss (horizontal or vertical betatron motion or off-momentum), or a feedback to perform controlled off-momentum loss maps to validate the settings of the collimation system. This paper describes the diagnostic possibilities that open up when such measurements from several systems are combined.
This is proposed as an Invited presentation from CERN Beam Instrumentation Group.
 
slides icon Slides TUAO01 [9.161 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUAO01  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAO03 Beam Loss Measurements Using the Cherenkov Effect in Optical Fiber for the BINP ee+ Injection Complex electron, extraction, radiation, injection 233
 
  • Yu.I. Maltseva, A.R. Frolov, V.G. Prisekin
    BINP SB RAS, Novosibirsk, Russia
 
  Optical fiber based beam loss monitor (OFBLM) has been developed for the 500 MeV BINP Injection Complex (IC). Such monitor is useful for accelerator commissioning and beam alignment, and allows real-time monitoring of ee+ beam loss position and intensity. Single optical fiber (OF) section can cover the entire accelerator instead of using a large number of local beam loss monitors. In this paper brief OFBLM selection in comparison with other distributed loss monitors was given. Methods to improve monitor spatial resolution are discussed. By selecting 45 m long silica fiber (with a large core of 550 um) and microchannel plate photomultiplier (MCP-PMT), less than 1 m spatial resolution can be achieved.  
slides icon Slides TUAO03 [3.053 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUAO03  
About • paper received ※ 05 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)