Keyword: FEL
Paper Title Other Keywords Page
MOZBA1 LCLS-II SC Linac: Challenges and Status cavity, cryomodule, SRF, linac 51
 
  • M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Funding: ∗ This work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515
The Linac Coherent Light Source II (LCLS-II) project requires the assembly, test, and installation of 37 cry-omodules (CM) in order to deliver a 4 GeV CW electron beam to the FEL undulators for production of both hard and soft X-ray pulses at a repetition rate of up to 1 MHz. All of the cryomodules will operation in continuous wave mode, with 35 operating at 1.3 GHz for acceleration and 2 operating at 3.9 GHz to linearize the longitudinal beam profile. The assembly and testing of the 1.3 GHz cry-omodules is nearing completion and the 3.9 GHz cry-omodules work is entering to assembly and testing phase. Roughly 60% of the cryomodules have been shipped to SLAC for installation in the accelerator enclosure. The status and challenges of these efforts will be reported in this paper.
 
slides icon Slides MOZBA1 [80.533 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBA1  
About • paper received ※ 02 September 2019       paper accepted ※ 12 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZBA4 Recent Developments in High Power High Brightness Double Bunch Self-Seeding at LCLS-II undulator, photon, electron, simulation 67
 
  • A. Halavanau, F.-J. Decker, Y. Ding, C. Emma, Z. Huang, A.A. Lutman, G. Marcus, C. Pellegrini
    SLAC, Menlo Park, California, USA
 
  We discuss the power and spectral characteristics of an X-ray FEL, LCLS-II, operating in a double bunch self-seeding scheme (DBFEL). We show that it can reach very high power levels in the photon energy range of 4-8 keV. We discuss the system implementation on LCLS-II, including the design of a four-bounce crystal monochromator, and linac wakefields effects. Finally, we offer multiple applications of the DBFEL for high-field QED, AMO physics and single particle imaging.  
slides icon Slides MOZBA4 [3.175 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBA4  
About • paper received ※ 02 September 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLO01 A Beam Spreader System for LCLS-II kicker, septum, undulator, electron 236
 
  • T.G. Beukers, J.W. Amann, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
 
  For the LCLS-II project, the SLAC National Accelerator Laboratory is installing a new superconducting RF linac capable of continuously delivering 4 GeV electron bunches spaced 1.1 microseconds apart. A spreader system is required to distribute the beam between a soft X-ray or hard X-ray undulator, and a beam dump. An additional beam diverter is required in the front end of the linac to divert 100 MeV electrons to a diagnostic line. Both the spreader and diagnostic diversion systems are designed to operate on a bunch by bunch basis via the combination of fast kickers and a Lambertson septum. This paper presents a summary of the optics, kicker, and septum design. Of specific interest is the unique challenge associated with building a high repetition, high stability, spreader capable of diverting a single bunch without disturbing neighboring bunches. Additional discussion includes the application of the spreader technology to the proposed DASEL/S30XL beamline. This beamline will acceptμbunches evenly spaced between the undulator bound bunches, thus requiring a kicker with the same repetition rate as LCLS-II but a pulse width extended to approximately 600 ns.  
poster icon Poster MOPLO01 [1.256 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO01  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLO23 Investigation of Various Fabrication Methods to Produce a 180GHz Corrugated Waveguide Structure in 2mm Diameter ­0.5m ­Long Copper Tube for the Compact Wakefield Accelerator for FEL Facility GUI, laser, electron, wakefield 286
 
  • K.J. Suthar, D.S. Doran, W.G. Jansma, S.S. Sorsher, E. Trakhtenberg, G.J. Waldschmidt, A. Zholents
    ANL, Lemont, Illinois, USA
  • A.E. Siy
    UW-Madison/PD, Madison, Wisconsin, USA
 
  Funding: This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated by the Argonne National Laboratory under Contract No. DE­AC02­06CH11357.
Argonne National Laboratory is developing a 180 GHz wakefield structure that will house in a co-linear array of accelerators to produce free-electron laser-based X-rays. The proposed corrugated waveguide structure will be fabricated on the internal wall of 0.5m long and 2mm nominal diameter copper tube. The estimated dimensions of these parallel corrugations are 200 µm in pitch with 100 µm side length (height and width). The length scale of the structure and requirements of the magnetic field-driven dimensional tolerances have made the structure challenging to produce. We have employed several method such as optical lithography, electroforming, electron discharge machining, laser ablation, and stamping to produce the initial structure from a sheet form. The successive fabrication steps, such as bending, brazing, and welding, were performed to achieve the long tubular-structure. This paper discusses various fabrication techniques, characterization, and associated technical challenges in detail.
[1] A. Zholents et al., Proc. 9-th Intern. Part. Acc. Conf., IPAC2018, Vancouver, BC, Canada, p. 1266, (2018)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO23  
About • paper received ※ 27 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLH09 Thermal Effects on Bragg Diffraction of XFEL Optics photon, optics, simulation, synchrotron 506
 
  • Z. Qu, J. Wu, G. Zhou
    SLAC, Menlo Park, California, USA
  • Y. Ma, Z. Qu
    UC Merced, Merced, California, USA
  • B. Yang
    Western Digital, Milpitas, California, USA
 
  Funding: The US Department of Energy (DOE) (DE-AC02-76SF00515); The US DOE Office of Science Early Career Research Program grant (FWP-2013-SLAC-100164).
Crystal optical devices are widely used in X-ray free electron laser (XFEL) systems, monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, and spectrometers. The absorption of X-ray in these optical devices can cause increase of temperature and consequent thermal deformation, which can dynamic change in optic output. In self-seeding XFEL, the thermal deformation and strain in monochromator could cause significant seed quality degradation: central energy shift, band broadening and reduction in seed power. To quantitatively estimate the impact of thermomechanical effects on seed quality, we conduct thermomechanical simulations combined with diffraction to evaluate the seed quality with residual temperature field in a pump-probe manner. With our results, we show that a critical repetition rate could be determined, once the criteria for deviation of the seed quality are selected. This tool shows great potential for the design of XFEL optics for stable operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLH09  
About • paper received ※ 28 August 2019       paper accepted ※ 13 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLH10 Fabrication Progress of a Superconducting Helical Undulator with Superimposed Focusing Gradient for High Efficiency Tapered X-Ray FELs undulator, quadrupole, vacuum, focusing 509
 
  • S.M. Lynam, R.B. Agustsson, I.I. Gadjev, A.Yu. Smirnov
    RadiaBeam, Santa Monica, California, USA
  • F.H. O’Shea
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Funding: This work is supported by DOE grant no. DE-SC0017072, "Superconducting Helical Undulator with Superimposed Focusing Gradient for High Efficiency Tapered X-Ray FELs"
The Advanced Gradient Undulator (AGU) represents a potentially significant advancement in x-ray conversion efficiency for x-ray FELs. This increase in efficiency would have broad implications on the capabilities of x-ray light sources. To achieve this high conversion efficiency, the inner diameter of the undulator coil is a mere 7mm, even with the use of superconducting coils. To accommodate the beamline at the Advanced Photon Source this yields in a chamber with a wall thickness of 0.5mm fabricated from Aluminum. With a period of 2cm and a conductor position tolerance of <100 µm over a length of >80cm at 4.2K, the engineering and fabrication challenges for the undulator alone are substantial. We will discuss these fabrication challenges and present solutions to meet the tolerances required for desired performance, and provide an update on current progress of the construction of a section of the AGU insertion device.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLH10  
About • paper received ※ 28 August 2019       paper accepted ※ 16 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLH24 Performance of CeC PoP Accelerator electron, gun, SRF, hadron 526
 
  • I. Pinayev, Z. Altinbas, J.C. Brutus, A.J. Curcio, A. Di Lieto, T. Hayes, R.L. Hulsart, P. Inacker, Y.C. Jing, V. Litvinenko, J. Ma, G.J. Mahler, M. Mapes, K. Mernick, K. Mihara, T.A. Miller, M.G. Minty, G. Narayan, I. Petrushina, F. Severino, K. Shih, Z. Sorrell, J.E. Tuozzolo, E. Wang, G. Wang, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Coherent electron cooling experiment is aimed for demonstration of the proof-of-principle demonstration of reduction energy spread of a single hadron bunch circulating in RHIC. The electron beam should have the required parameters and its orbit and energy should be matched to the hadron beam. In this paper we present the achieved electron beam parameters including emittance, energy spread, and other critical indicators. The operational issues as well as future plans are also discussed.
 
poster icon Poster TUPLH24 [11.180 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLH24  
About • paper received ※ 29 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLE13 Analytical Thermal Analysis of Thin Diamond in High-Intensity High-Repetition-Rate Application laser, electron, operation, free-electron-laser 587
 
  • Y. Hong, B. Yang
    University of Texas at Arlington, Arlington, USA
  • J. Wu, G. Zhou
    SLAC, Menlo Park, California, USA
 
  Thin diamond plates are used in monochromator for X-ray Free-Electron Laser self-seeding scheme. To function properly, they must endure high-intensity and high-repetition-rate laser pulses without crossing thresholds set by various adverse effects, such as thermal strain-induced diffraction distortion and graphitization. In this work, a theoretical model is developed, and an analytical solution is derived to elucidate potential thermal runaway under edge cooling condition. It is shown that the crystal edge cooling can effectively mitigate the issue to a certain extent. The analytical solution can be used as an efficient tool for XFEL operation parameter setup.  
poster icon Poster TUPLE13 [0.939 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE13  
About • paper received ※ 27 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBB1 Adaptive Machine Learning and Automatic Tuning of Intense Electron Bunches in Particle Accelerators electron, controls, feedback, target 609
 
  • A. Scheinker
    LANL, Los Alamos, New Mexico, USA
 
  Machine learning and in particular neural networks, have been around for a very long time. In recent years, thanks to growth in computing power, neural networks have reshaped many fields of research, including self driving cars, computers playing complex video games, image identification, and even particle accelerators. In this tutorial, I will first present an introduction to machine learning for beginners and will also touch on a few aspects of adaptive control theory. I will then introduce some problems in particle accelerators and present how they have been approached utilizing machine learning techniques as well as adaptive machine learning approaches, for automatically tuning extremely short and high intensity electron bunches in free electron lasers.  
slides icon Slides WEXBB1 [58.913 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEXBB1  
About • paper received ※ 28 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYBA3 Tolerances for Plasma Wakefield Acceleration Drivers plasma, luminosity, emittance, acceleration 614
 
  • G.R. White, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
 
  Transverse jitter tolerances are considered for beam-driven plasma accelerators. A simple model for jitter transfer from the drive to witness beam was developed and con-crete examples were studied for: high-brightness witness bunch injectors; high-energy boosters for FEL’s; and future Linear Colliders. For the LC application, we con-sider a superconducting Linac designed to minimize the jitter conditions of the drive beam. We use a start-to-end tracking model to simulate expected jitter performance. The tolerances on each subsystem of the driver Linac are found to be very tight, especially for magnet vibration which must be controlled at the sub-nm level.
Work supported by the Department of Energy under Contract Number: DE-AC02-76SF00515.
 
slides icon Slides WEYBA3 [6.178 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEYBA3  
About • paper received ※ 27 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXBA3 Adaptive Machine Learning and Feedback Control for Automatic Particle Accelerator Tuning electron, controls, target, laser 916
 
  • A. Scheinker
    LANL, Los Alamos, New Mexico, USA
 
  Free electron lasers (FEL) and plasma wakefield accelerators (PWA) are creating more and more complicated electron bunch configurations, including multi-color modes for FELs such as LCLS and LCLS-II and custom tailored bunch current profiles for PWAs such as FACET-II. These accelerators are also producing shorter and higher intensity bunches than before and require an ability to quickly switch between many different users with various specific phase space requirements. For some very exotic setups it can take hours of tuning to provide the beams that users require. In this work, we present results adaptive machine learning and model independent feedback techniques and their application in both the LCLS and European XFEL to 1) control electron bunch phase space to create desired current profiles and energy spreads by tuning FEL components automatically, 2) maximize the average pulse output energy of FELs by automatically tuning over 100 components simultaneously, 3) preliminary results on utilizing these techniques for non-invasive electron bunch longitudinal phase space diagnostics at PWAs.  
slides icon Slides THXBA3 [8.110 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THXBA3  
About • paper received ※ 27 August 2019       paper accepted ※ 15 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXBA5 The Role of Laser Shaping in Microbunching Instability Suppression and Seeded X-Ray Free Electron Emission laser, bunching, electron, experiment 990
 
  • J. Tang, S. Carbajo, F.-J. Decker, Z. Huang, J. Krzywiński, R.A. Lemons, W. Liu, A.A. Lutman, G. Marcus, T.J. Maxwell, S.P. Moeller, D.F. Ratner, S. Vetter
    SLAC, Menlo Park, California, USA
 
  Microbunching instability (MBI) driven by collective effects in an accelerator is known to be detrimental for the performance of X-ray free electron lasers. At the Linac Coherent Light Source (LCLS), laser heater (LH) system was installed to suppress the microbunching instability by inducing a small amount of slice energy spread to the electron beam. The distribution of the induced energy spread greatly effects MBI suppression and can be controlled by shaping the transverse profile of the heater laser. In this paper, we present theoretical and experimental results on utilizing a Laguerre-Gaussian 01 Mode (LG01) laser at LCLS to obtain better suppression of the instability. We demonstrate experimentally that Gaussian-shaped energy distribution is induced by LG01 mode LH and final microbunching gain is better suppressed. We finally discuss the role of LH spatial shaping in soft X-ray self-seeded (SXRSS) FEL emission and demonstrate that this LH configuration is capable of generating high spectral brightness FEL pulses.  
slides icon Slides FRXBA5 [3.162 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-FRXBA5  
About • paper received ※ 28 August 2019       paper accepted ※ 12 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCHC2 Possibilities for Future Synchrotron Radiation Sources electron, laser, free-electron-laser, radiation 1000
 
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
 
  The landscape of present accelerator based light sources is drawn. The photon beam brightness increases opens new areas of user applications, both with the arrival of low emittance rings getting closer to diffraction limit and the advent of X-ray Free Electron Lasers, providing agility in terms of performance (two colors, attosecond pulse…). Finally, the path towards light sources using alternate accelerator schemes, such as plasma acceleration is discussed.  
slides icon Slides FRCHC2 [76.897 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-FRCHC2  
About • paper received ※ 04 September 2019       paper accepted ※ 16 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)