Keyword: gun
Paper Title Other Keywords Page
MOZBB5 Magnetized Electron Source for JLEIC Cooler cathode, electron, solenoid, high-voltage 83
 
  • R. Suleiman, P.A. Adderley, J.F. Benesch, D.B. Bullard, J.M. Grames, J. Guo, F.E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, M.A. Mamun, M. Poelker, M.G. Tiefenback, Y.W. Wang, S. Zhang
    JLab, Newport News, Virginia, USA
  • J.R. Delayen, G.A. Krafft, S.A.K. Wijethunga, J.T. Yoskowitz
    ODU, Norfolk, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and supported by Laboratory Directed Research and Development funding.
Magnetized bunched-beam electron cooling is a critical part of the Jefferson Lab Electron Ion Collider (JLEIC). Strong cooling of ion beams will be accomplished inside a cooling solenoid where the ions co-propagate with an electron beam generated from a source immersed in magnetic field. This contribution describes the production and characterization of magnetized electron beam using a compact 300 kV DC high voltage photogun and bialkali-antimonide photocathodes. Beam magnetization was studied using a diagnostic beamline that includes viewer screens for measuring the shearing angle of the electron beamlet passing through a narrow upstream slit. Correlated beam emittance with magnetic field at the photocathode was measured for various laser spot sizes. Measurements of photocathode lifetime were carried out at different magnetized electron beam currents up to 28 mA and high bunch charge up to 0.7 nano-Coulomb was demonstrated.
 
slides icon Slides MOZBB5 [9.236 MB]  
poster icon Poster MOZBB5 [1.564 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBB5  
About • paper received ※ 27 August 2019       paper accepted ※ 01 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM06 High Voltage Design of a 350 kV DC Photogun at BNL electron, cathode, high-voltage, vacuum 102
 
  • W. Liu, O.H. Rahman, E. Wang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Brookhaven National Laboratory is constructing a 350 kV DC high voltage photogun to provide spin-polarized electron beam for the proposed eRHIC facility. The photogun employs a compact inverted-tapered-geometry ceramic insulator that extends into the vacuum chamber and mechanically holds the cathode electrode. By operating at high voltage, the photogun will provide lower beam emittance, thereby improving the beam transmission through the injector apertures, and prolong the operating lifetime of the photogun. However, high voltage increases the field emission, which can result in high voltage breakdown and even lead to irreparable damage of the ceramic insulator. This work describes the methods to minimize the electric field near the metal-vacuum-insulator interface, and to avoid high voltage breakdown and ceramic insulator damage. The triple point junction shields are designed. The simulated electric field, field emission and beam transportation will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM06  
About • paper received ※ 19 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM13 Investigations of the Electron Beam Energy Jitter Generated in the Photocathode RF Gun at the Advanced Photon Source Linac timing, laser, electron, cathode 124
 
  • J.C. Dooling, D. Hui, A.H. Lumpkin, T.L. Smith, Y. Sun, K.P. Wootton, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357.
Characterizations continue of the electron beam properties of a recently installed S-band photocathode (PC) rf gun at the Advanced Photon Source Linac facility. In this case, we have utilized a low-energy spectrometer beam line located 1.3 m downstream of the gun cavity to measure the electron beam energy, energy spread, and energy jitter. The nominal energy was 6.5 MeV using a gun gradient of 110 MV/m, and the energy spread was ~17 keV when driven by a 2.5-ps rms duration UV laser pulse at the selected rf gun phase. An energy jitter of 25 keV was initially observed in the spectrometer focal plane images. This jitter was partly attributed to the presence of both the 2nd and 3rd harmonics of the 119 MHz synchronization signal provided to the phase locked loop of the drive laser oscillator. The addition of a 150-MHz low-pass filter in the 119-MHz line strongly attenuated the two harmonics and resulted in a reduced energy jitter of ~15 keV. Comparisons of the gun performance to ASTRA simulations will also be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM13  
About • paper received ※ 28 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM15 Design of the ASU Photocathode Lab cathode, electron, diagnostics, emittance 132
 
  • C.J. Knill, S.S. Karkare
    Arizona State University, Tempe, USA
  • J.V. Conway, B.M. Dunham, K.W. Smolenski
    Xelera Research LLC, Ithaca, New York, USA
  • H.A. Padmore
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams.
Recent investigations have shown that it is possible to obtain an order of magnitude smaller intrinsic emittance from photocathodes by precise atomic scale control of the surface, using an appropriate electronic band structure of single crystal cathodes and cryogenically cooling the cathode. Investigating the performance of such cathodes requires atomic scale surface diagnostic techniques connected in ultra-high vacuum (UHV) to the epitaxial thin film growth and surface preparation systems and photo-emission and photocathode diagnostic techniques. Here we report the capabilities and design of the laboratory being built at the Arizona State University for this purpose. The lab houses a 200 kV DC gun with a cryogenically cooled cathode along with a beam diagnostics and ultra fast electron diffraction beamline. The cathode of the gun can be transported in UHV to a suite of UHV growth chambers and surface and photoemission diagnostic techniques.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM15  
About • paper received ※ 26 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM16 Design of a 200 kV DC Cryocooled Photoemission Gun for Photocathode Investigations cathode, electron, emittance, radiation 136
 
  • G.S. Gevorkyan, S.S. Karkare
    Arizona State University, Tempe, USA
  • I.V. Bazarov, A. Galdi, J.M. Maxson
    Cornell University, Ithaca, New York, USA
  • L. Cultrera, W.H. Li
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under Award No. PHY-1549132, the Center for Bright Beams.
Intrinsic emittance of photocathodes limits the brightness of electrons beams produced from photoemission guns. Recent advancements have shown that an order of magnitude improvement in intrinsic emittance over the commonly used polycrystalline metal and semiconductor cathodes is possible via use of single crystalline ordered surfaces of metals, semiconductors and other exotic materials at cryogenic temperatures as cathodes. However, due to practical design considerations, it is not trivial to test such cathodes in existing electron guns. Here we present the design of a 200kV DC electron gun being developed at the Arizona State University for this purpose.
 
poster icon Poster MOPLM16 [1.549 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM16  
About • paper received ※ 27 August 2019       paper accepted ※ 12 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM18 Design of the 2-Stage Laser Transport for the Low Energy RHIC Electron Cooling (LEReC) DC Photogun laser, electron, cathode, alignment 144
 
  • P. Inacker, S. Bellavia, A.J. Curcio, A.V. Fedotov, W. Fischer, D.M. Gassner, J.P. Jamilkowski, P.K. Kankiya, D. Kayran, D. Lehn, R. Meier, T.A. Miller, M.G. Minty, S.K. Nayak, L.K. Nguyen, L. Smart, C.J. Spataro, A. Sukhanov, J.E. Tuozzolo, Z. Zhao
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The electron beam for the recently constructed Low Energy RHIC electron Cooler (LEReC) at Brookhaven National Laboratory is generated by a high-power fiber laser illuminating a photocathode. The pointing stability of the low-energy electron beam, which is crucial to maintain within acceptable limits given the long beam transport, is highly dependent on the center-of-mass (CoM) stability of the laser spot on the photocathode. For reasons of accessibility during operations, the laser itself is located outside the accelerator tunnel, leading to the need to propagate the laser beam 34 m via three laser tables to the photocathode. The challenges to achieving the required CoM stability of 10 microns on the photocathode thus requires mitigation of vibrations along the transport and of weather- and season-related environmental effects, while preserving accessibility and diagnostic capabilities with proactive design. After successful commissioning of the full transport in 2018/19, we report on our solutions to these design challenges.
LEReC Photocathode DC Gun Beam Test Results - D. Kayran Conference: C18-04-29, p.TUPMF025
Commissioning of Electron Accelerator LEReC for Bunch Beam Cooling - D.Kayran, NAPAC19
 
poster icon Poster MOPLM18 [1.970 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM18  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM24 LCLS-II Injector Commissioning Beam Based Measurements electron, laser, cathode, MMI 157
 
  • C.M. Zimmer, T.J. Maxwell, F. Zhou
    SLAC, Menlo Park, California, USA
 
  Funding: Department of Energy
Injector commissioning is underway for the LCLS-II MHz repetition rate FEL, currently under construction at SLAC. Methodology of injector beam-based measurements and early results with low beam charge will be presented, along with the software tools written to automate these various measurements.
 
poster icon Poster MOPLM24 [10.104 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM24  
About • paper received ※ 28 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLH02 Study of Photocathode Surface Damage due to Ion Back-Bombardment in High Current DC Gun cathode, simulation, electron, laser 174
 
  • J.P. Biswas
    Stony Brook University, Stony Brook, USA
  • O.H. Rahman, E. Wang
    BNL, Upton, New York, USA
 
  Funding: This work was supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704, with the U.S. DOE
In high current DC gun, GaAs photocathode lifetime is limited by the ion back-bombardment. While gun operation ions are generated and accelerate back towards the cathode thus remove the activation layer’s material Cesium from the photocathode surface. We have developed an object-oriented code to simulate the ion generation due to dynamic gas pressure and ion trace in the electromagnetic field. The pressure profile varies from cathode position towards the transfer line behind the anode, which signifies the importance of dynamic simulation for ion back-bombardment study. In our surface damage study, we traced the energy and position of the ions on the photocathode surface and performed the Stopping and Range of Ions in Matter(SRIM) simulation to count the number of Cesium atoms removed from the surface due to single bunch impact. Cesium atom removal is directly related to the photocathode Quantum Efficiency(QE) decay. Our new dynamic simulation code can be used in any DC gun to study ion back-bombardment. We have used this new code to better understand the ion generation in prototype BNL 350 KV DC gun, and we have also estimated the normalized QE decay due to ion back-bombardment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLH02  
About • paper received ※ 27 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLH04 Design for HyRES Cathode Nanotip Electron Source electron, cavity, solenoid, cathode 177
 
  • R.M. Hessami, A.F. Amhaz, P. Musumeci
    UCLA, Los Angeles, USA
 
  A new ultrafast electron diffraction (UED) instrument is being developed by UCLA-Colorado University collaboration for the STROBE NSF Center with the goal of using electron and EUV photon beams to reveal the structural dynamics of materials in non-equilibrium states at fundamental atomic and temporal scales. This paper describes the design of the electron beamline of this instrument. In order to minimize the initial emittance, a nanotip photocathode, 25 nm in radius, will be used. This requires a redesign of the cathode and anode components of the electron gun to allow for the tip to be properly aligned. Solenoidal lenses are used to focus the beam transversely to a sub-micron spot at the sample and a radiofrequency (RF) cavity, driven by a continuous wave S-band RF source, longitudinally compresses the beam to below 100 fs, required for atomic resolution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLH04  
About • paper received ※ 27 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLH14 Ultrafast Nonlinear Photoemission from Alkali Antimonide Photocathodes photon, electron, cathode, laser 203
 
  • W.H. Li, M.B. Andorf, I.V. Bazarov, L. Cultrera, C.J.R. Duncan, A. Galdi, J.M. Maxson, C.A. Pennington
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under Award No. PHY-1549132, the Center for Bright Beams.
Alkali antimonides photocathodes are a popular choice of electron source for high average brightness beams, due to their high quantum efficiency (QE) and low mean transverse energy (MTE). This paper describes the first measurements of their nonlinear photoemission properties under sub-ps laser illumination. These measurements include wavelength-resolved power dependence, pulse length dependence, and temporal response. The transition between linear and nonlinear photoemission is observed through the wavelength-resolved scan, and implications of nonlinear photoemission are discussed.
 
poster icon Poster MOPLH14 [0.543 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLH14  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLO06 Black Gun Technologies for DC Photoinjectors vacuum, electron, laser, scattering 247
 
  • E.J. Montgomery, C. Jing, S. Poddar
    Euclid Beamlabs LLC, Bolingbrook, USA
  • J.E. Butler
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the US DOE Office of Science, Office of Nuclear Physics, grant number DESC0019688. Work at Argonne CNM under Contract No. DE-AC02-06CH11357.
Euclid Beamlabs is developing a new "Black Gun" concept in direct current (DC) photoinjectors. To reduce electron-stimulated desorption indirectly influenced by stray photoemission, we are testing advanced optical coatings and low-scattering optics compatible with the extreme high vacuum (XHV) environment of modern DC photoinjectors. Stray light in DC photoinjectors (in proportion to the photoemitted charge) causes off-nominal photoemission, initiating electron trajectories which intercept downstream surfaces. This causes electron-stimulated desorption of atoms, which ionize and may back-bombard the cathode, reducing its charge lifetime. Back-bombardment is key for high average current or high repetition rate. First, we report on progress developing optical skimmers based on Butler baffles to collimate both incoming and outgoing laser beams. Second, we describe candidate coatings for reduction of scattered light. Requirements for these coatings are that they be conducting, optically black at the drive laser wavelength, conformally applied to complex geometry, and XHV-compatible with negligible outgassing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO06  
About • paper received ※ 04 September 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYBA3 Benchmarking the LCLS-II Photoinjector simulation, laser, solenoid, emittance 301
 
  • N.R. Neveu, T.J. Maxwell, C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: DOE Contract No. DE-AC02-76SF00515
Commissioning of the LCLS-II photoinjector started in late 2018. Efforts to accurately model the gun and laser profiles is ongoing. Simulations of the photoinjector and solenoid are performed in ASTRA, IMPACT-T and OPAL-T. This work includes efforts to use the laser profile at the virtual cathode as the initial transverse beam distribution, and effects of 2D and 3D field maps. Beam size results are compared to experimental measurements taken at the YAG screen located after the gun.
 
slides icon Slides TUYBA3 [1.320 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUYBA3  
About • paper received ※ 29 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYBA4 Optimization of an SRF Gun Design for UEM Applications SRF, laser, cavity, electron 305
 
  • A. Liu, P.V. Avrakhov
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • C. Jing, R.A. Kostin
    Euclid Beamlabs LLC, Bolingbrook, USA
 
  Funding: DOE contract DE-SC0018621
Benefiting from the rapid progress on RF photocathode gun technologies in the past two decades, the development of MeV-range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation, which may lead to breakthroughs in fundamental science and applied technologies *. Euclid is designing an SRF cavity as the UEM electron gun. As implementing a solenoid for emittance compensation in the gun is limited by the superconductivity performance and available space, the geometry of the first 0.3 cell of the cavity is optimized for transverse focusing and emittance reduction.
*: T. Chase, et al, "Ultrafast electron diffraction from non- equilibrium phonons in femtosecond laser heated Au films." Applied Physics Letters, 2016
 
slides icon Slides TUYBA4 [7.583 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUYBA4  
About • paper received ※ 30 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYBB6 Beam Dynamics in a High Gradient RF Streak Camera electron, cathode, experiment, photon 326
 
  • F. Toufexis, V.A. Dolgashev, A. Landa
    SLAC, Menlo Park, California, USA
 
  Funding: This project was funded by U.S. Department of Energy under Contract No. DE-AC02-76SF00515.
Traditionally, time-resolved experiments in storage ring synchrotron light sources and free-electron lasers are performed with short x-ray pulses with time duration smaller than the time resolution of the phenomenon under study. Typically, storage-ring synchrotron light sources produce x-ray pulses on the order of tens of picoseconds. Newer diffraction limited storage rings produce even longer pulses. We propose to use a high-gradient RF streak camera for time-resolved experiments in storage-ring synchrotron light sources with potential for sub-100 fs resolution. In this work we present a detailed analysis of the effects of the initial time and energy spread of the photo-emitted electrons on the time resolution, as well as a start-to-end beam dynamics simulation in an S-Band system.
* F. Toufexis, et al, "Sub-Picosecond X-Ray Streak Camera using High-Gradient RF Cavities", in Proceedings of IPAC’19.
 
slides icon Slides TUYBB6 [5.958 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUYBB6  
About • paper received ※ 28 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBA1 Commissioning of the Electron Accelerator LEReC for Bunched Beam Cooling electron, cavity, operation, cathode 330
 
  • D. Kayran, Z. Altinbas, D. Bruno, M.R. Costanzo, K.A. Drees, A.V. Fedotov, W. Fischer, M. Gaowei, D.M. Gassner, X. Gu, R.L. Hulsart, P. Inacker, J.P. Jamilkowski, Y.C. Jing, J. Kewisch, C.J. Liaw, C. Liu, J. Ma, K. Mernick, T.A. Miller, M.G. Minty, L.K. Nguyen, M.C. Paniccia, I. Pinayev, V. Ptitsyn, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, L. Smart, K.S. Smith, A. Sukhanov, P. Thieberger, J.E. Tuozzolo, E. Wang, G. Wang, W. Xu, A. Zaltsman, H. Zhao, Z. Zhao
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The brand-new state of the art electron accelerator, LEReC, was built and commissioned at BNL. LEReC accelerator includes a photocathode DC gun, a laser system, a photocathode delivery system, magnets, beam diagnostics, a SRF booster cavity, and a set of Normal Conducting RF cavities to provide sufficient flexibility to tune the beam in the longitudinal phase space. Electron beam quality suitable for cooling in the Relativistic Heavy Ion Collider (RHIC) was achieved [1], which lead to the first demonstration of bunched beam electron cooling of hadron beams [2]. This presentation will discuss commissioning results, achieved beam parameters and performance of the LEReC systems.
[1] D.Kayran et al., First results from Commissioning of LEReC, in Proc of IPAC2019
[2] A.Fedotov et al., First electron cooling of hadron beams using a bunched electron beam, presented at NAPAC2019
 
slides icon Slides TUZBA1 [18.343 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBA1  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZBB4 Space Charge Study of the Jefferson Lab Magnetized Electron Beam laser, electron, cathode, space-charge 360
 
  • S.A.K. Wijethunga, J.R. Delayen, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • J.F. Benesch, F.E. Hannon, C. Hernandez-Garcia, G.A. Krafft, M.A. Mamun, M. Poelker, R. Suleiman, S. Zhang
    JLab, Newport News, Virginia, USA
 
  Magnetized electron cooling could result in high luminosity at the proposed Jefferson Lab Electron-Ion Collider (JLEIC). In order to increase the cooling efficiency, a bunched electron beam with high bunch charge and high repetition rate is required. We generated magnetized electron beams with high bunch charge using a new compact DC high voltage photo-gun biased at -300 kV with alkali-antimonide photocathode and a commercial ultrafast laser. This contribution explores how magnetization affects space charge dominated beams as a function of magnetic field strength, gun high voltage, laser pulse width, and laser spot size.  
slides icon Slides TUZBB4 [12.582 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBB4  
About • paper received ※ 28 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLM18 Improving Energy Resolution and Compensating Chromatic Aberration With a TM010 Microwave Cavity cavity, electron, simulation, laser 411
 
  • C.J.R. Duncan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • P. Cueva, J.M. Maxson, D.A. Muller
    Cornell University, Ithaca, New York, USA
 
  Funding: National Science Foundation under Award OIA-1549132, the Center for Bright Beams
The intrinsic energy spread of electron sources limits the achievable resolution of electron microscopes in both spectroscopic and spatially resolved measurements. We propose that the TM010 mode of a single radio frequency (RF) cavity be used to dramatically reduce this energy spread in a pulsed beam. We show with analytic approximations, confirmed in simulations, that the non-linear time-energy correlations that develop in an electron gun can be undone by the RF cavity running near-crest. We derive an expression that gives the required RF field strength as a function of accelerating voltage. We explore multiple applications, including EELS and SEM. By pulsing a photocathode with commercially available, high repetition-rate lasers, our scheme could yield competitive energy spread reduction at higher currents when compared with monochromated continuous-wave sources for electron microscopes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM18  
About • paper received ※ 27 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLM33 Optimization of Beam Parameters for UEM with Photo-Emission S-Band RF Gun and Alpha Magnet electron, emittance, laser, simulation 440
 
  • H.R. Lee, P. Buaphad, I.G. Jeong, Y. Joo, Y. Kim
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • P. Buaphad, I.G. Jeong, Y. Joo, Y. Kim
    KAERI, Jeongeup-si, Republic of Korea
  • B.L. Cho
    KRISS, Daejeon, Republic of Korea
  • M.Y. Han, J.Y. Lee, S.H. Lee
    Korea Atomic Energy Research Institute (KAERI), Daejeon, Republic of Korea
  • H. Suk
    GIST, Gwangju, Republic of Korea
 
  Ultrafast Electron Microscopy (UEM) is a powerful tool to observe ultrafast dynamical processes in sample materials at the atomic level. By collaborating with KRISS and GIST, the future accelerator R&D team at KAERI has been developing a UEM facility based on a photo-emission S-band (=2856 MHz) RF gun. Recently, we have added an alpha magnet in the beamline layout of the UEM to improve beam qualities such as emittance, divergence, energy spread, and bunch length. To achieve high spatial and time resolutions, we have been optimizing those beam parameters and other machine parameters by performing numerous ASTRA and ELEGANT code simulations. In this paper, we describe our ASTRA and ELEGANT code optimizations to obtain high-quality beam parameters for the UEM facility with a photo-emission S-band RF gun and an alpha magnet.  
poster icon Poster TUPLM33 [0.931 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM33  
About • paper received ※ 30 August 2019       paper accepted ※ 19 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLS10 Troubleshooting and Characterization of Gridded Thermionic Electron Gun cathode, electron, controls, operation 474
 
  • M.S. Stefani
    ODU, Norfolk, Virginia, USA
  • F.E. Hannon
    JLab, Newport News, Virginia, USA
 
  Jefferson National Laboratory has, in collaboration with Xelera research group, designed and built a gridded thermionic election gun with the potential for magnetization; in an effort to support research towards electron sources that may be utilized for the electron cooling process in the Jefferson Laboratories Electron Ion collider design. Presented here is the process and result of troubleshooting the electron gun components and operation to ensure functionality of the design.  
poster icon Poster TUPLS10 [10.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLS10  
About • paper received ※ 27 August 2019       paper accepted ※ 13 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLH03 Double-Bend Achromat Beamline for Injection Into a High-Power Superconducting Electron Linac solenoid, electron, dipole, cavity 494
 
  • C.H. Boulware, T.L. Grimm, R. Hipple
    Niowave, Inc., Lansing, Michigan, USA
  • S.M. Lund
    FRIB, East Lansing, Michigan, USA
  • V.S. Morozov
    JLab, Newport News, Virginia, USA
 
  To take advantage of the high duty cycle operation of superconducting electron linacs, commercial systems use thermionic cathode electron guns that fill every RF bucket with an electron bunch. In continuous operation, the exit energy is limited when compared to pulsed systems. Bunch length and energy spread at the exit of the gun are incompatible with low losses in the superconducting cavity. A solenoid double-bend achromatic beamline is in operation at Niowave which allows energy and bunch length filtering of the beam leaving the gun before injection into the superconducting cavity. This system uses two solenoids and two dipoles to produce a round beam, using the edge angles of the dipoles to balance the focusing effects in the two transverse planes. The design allows beam filtering on the symmetry plane where the dispersion is maximum. Additionally, the bend angle moves the electron gun off the high-energy beam axis, allowing multiple-pass operation of the superconducting booster. This contribution will discuss the beam optics design of the double-bend achromat along with the design of the magnets and beam chambers and the operational experience with the system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLH03  
About • paper received ※ 28 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLH24 Performance of CeC PoP Accelerator electron, FEL, SRF, hadron 526
 
  • I. Pinayev, Z. Altinbas, J.C. Brutus, A.J. Curcio, A. Di Lieto, T. Hayes, R.L. Hulsart, P. Inacker, Y.C. Jing, V. Litvinenko, J. Ma, G.J. Mahler, M. Mapes, K. Mernick, K. Mihara, T.A. Miller, M.G. Minty, G. Narayan, I. Petrushina, F. Severino, K. Shih, Z. Sorrell, J.E. Tuozzolo, E. Wang, G. Wang, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Coherent electron cooling experiment is aimed for demonstration of the proof-of-principle demonstration of reduction energy spread of a single hadron bunch circulating in RHIC. The electron beam should have the required parameters and its orbit and energy should be matched to the hadron beam. In this paper we present the achieved electron beam parameters including emittance, energy spread, and other critical indicators. The operational issues as well as future plans are also discussed.
 
poster icon Poster TUPLH24 [11.180 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLH24  
About • paper received ※ 29 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYBA5 Diamond Field Emitter Array Cathode Experimental Tests in RF Gun cathode, experiment, electron, emittance 618
 
  • K.E. Nichols, H.L. Andrews, D. Kim, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • S.P. Antipov
    Euclid Beamlabs LLC, Bolingbrook, USA
  • G. Chen
    IIT, Chicago, Illinois, USA
  • M.E. Conde, D.S. Doran, G. Ha, W. Liu, J.F. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: LANL/LDRD
Diamond Field Emitter Array (DFEA) cathodes are arbitrarily shaped arrays of sharp (~50 nm tip size) nano-diamond pyramids with bases on the order of 3 to 25 microns and pitches 5 microns and greater. These cathodes have demonstrated very high bunch charge in tests at the L-band RF gun at the Argonne National Laboratory (ANL) Advanced Cathode Test Stand (ACTS). Intrinsically shaped electron beams have a variety of applications, but primarily to achieve high transformer ratios for Dielectric Wakefield Accelerators (DWA) when used in conjunction with Emittance Exchange (EEX) systems. Here we will present results from a number of recent cathode tests including bunch charge and YAG images. We have demonstrated shaped beam transport down the 2.54-meter beamline. In addition we will present emission simulations that demonstrate shielding effects for this geometry.
 
slides icon Slides WEYBA5 [13.017 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEYBA5  
About • paper received ※ 01 September 2019       paper accepted ※ 19 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYBB4 Progress of Liquid Lithium Stripper for FRIB operation, vacuum, MMI, electron 636
 
  • T. Kanemura, J. Gao, R. Madendorp, F. Marti, Y. Momozaki
    FRIB, East Lansing, Michigan, USA
  • M.J. LaVere
    MSU, East Lansing, Michigan, USA
  • Y. Momozaki
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) at Michigan State University is building a heavy ion linear accelerator (linac) to produce rare isotopes by the fragmentation method. At energies between 16 and 20 MeV/u ions are further stripped by a charge stripper increasing the energy gain downstream in the linac. The main challenges in the stripper design are high power deposited by the ions in the stripping media and radiation damage to the media itself. To overcome these challenges, self-recovering stripper media are the most suitable solutions. The FRIB baseline choice is a high-velocity thin film of liquid lithium*. Because liquid lithium is highly reactive with air, we have implemented rigorous safety measures. Since May 2018, the lithium stripper system has been operated safely at an offline test site to accumulate operational experience. Recently, we successfully completed a 10-day long unattended continuous operation without any issue, which proved the reliability of the system. The next step is to characterize the lithium film stability with diagnostics. In 2020, we plan to bring the lithium stripper into the accelerator tunnel and commission it with ion beams.
*Jie Wei, et al., TU1A04, Proceedings of LINAC 2012, Tel-Aviv, Israel
 
slides icon Slides WEYBB4 [6.012 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEYBB4  
About • paper received ※ 03 September 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLM53 50 kW CW Multi-Beam Klystron cavity, klystron, electron, cathode 717
 
  • S.V. Shchelkunov
    Yale University, Beam Physics Laboratory, New Haven, Connecticut, USA
  • J.L. Hirshfield, V.E. Teryaev
    Omega-P, Inc., New Haven, Connecticut, USA
 
  Funding: Funded by the US Department of Energy; grant DE-SC-0018471.
Main components, which are the electron gun, cavity-chain, magnetic system, and partially- grounded depressed four-stage collector, of a novel klystron were conceptually designed. This klystron is to deliver 50 kW CW at 952.6 MHz and to serve as a microwave power source for ion acceleration at the Electron Ion Collider (EIC) being developed at Thomas Jefferson National Accelerator Facility. The efficiency is 80%, a number to which the power consumption by the solenoid and filament are already factored in. The tube is a combination of proven technologies put together: it uses multiple beams to have its perveance low to boost beam-power to RF-power efficiency. It uses a partially grounded depressed collector to recover energy thereby increasing the overall efficiency. A low operating voltage of 14kV makes the tube more user-friendly avoiding need for costly modulators and oil insulation. A sectioned solenoid is used to insure superb beam-matching to all components downstream of the electron gun, increasing the tube performances. Details of the components designs will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM53  
About • paper received ※ 14 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYBA4 Status of the Magnetized Thermionic Electron Source at Jefferson Lab cathode, electron, emittance, diagnostics 931
 
  • F.E. Hannon, D.B. Bullard, C. Hernandez-Garcia, M.A. Mamun, M. Poelker, R. Suleiman
    JLab, Newport News, Virginia, USA
  • J.V. Conway, B.M. Dunham, R.G. Eichhorn, C.E. Mayes, K.W. Smolenski, N.W. Taylor
    Xelera Research LLC, Ithaca, New York, USA
  • C.M. Gulliford, V.O. Kostroun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M.S. Stefani
    ODU, Norfolk, Virginia, USA
 
  A 125kV DC gridded thermionic gun has been de-signed and constructed through a collaboration between Jefferson Lab and Xelera Research LLC. The gun has been recently installed at the Gun Test Stand diagnostic line at Jefferson Lab where transverse and longitudinal parameter space will be experimentally explored. The status and results characterizing the commissioning and trouble-shooting the thermionic gun are presented.  
slides icon Slides THYBA4 [13.653 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THYBA4  
About • paper received ※ 28 August 2019       paper accepted ※ 15 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYBB3 Compact 1 MeV Electron Accelerator cavity, GUI, vacuum, electron 942
 
  • S.V. Kuzikov
    IAP/RAS, Nizhny Novgorod, Russia
  • S.P. Antipov, P.V. Avrakhov
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  The cost of the accelerating structure in modern medical accelerators and industrial linacs is substantial. This comes to no surprise, as the accelerating waveguide is a set of diamond-turned copper resonators brazed together. Such a multistep manufacturing process is not only expensive, but also prone to manufacturing errors, which decrease the production yield. In the big picture, the cost of the accelerating waveguide precludes the use of accelerators as a replacement option for radioactive sources. Here we present a new cheap brazeless electron accelerating structure made out of two copper plates tightened together by means of an additional stainless steel plate. This additional plate, having sharp blades, is aimed to provide vacuum inside the whole system. The designed X-band 1 MeV structure consists of eight different length cells and accelerates field-emitted electrons from copper cathode. The structure is fed by 9 GHz magnetron which produces 240 kW, 1 µs pulses. The average gradient is as high as 10.6 MV/m, maximum surface fields do not exceed 50 MV/m.  
slides icon Slides THYBB3 [19.559 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THYBB3  
About • paper received ※ 27 August 2019       paper accepted ※ 15 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBA5 First Electron Cooling of Hadron Beams Using a Bunched Electron Beam electron, cavity, MMI, laser 957
 
  • A.V. Fedotov, Z. Altinbas, M. Blaskiewicz, J.M. Brennan, D. Bruno, J.C. Brutus, M.R. Costanzo, K.A. Drees, W. Fischer, J.M. Fite, M. Gaowei, D.M. Gassner, X. Gu, J. Halinski, K. Hamdi, L.R. Hammons, T. Hayes, R.L. Hulsart, P. Inacker, J.P. Jamilkowski, Y.C. Jing, P.K. Kankiya, D. Kayran, J. Kewisch, D. Lehn, C.J. Liaw, C. Liu, J. Ma, G.J. Mahler, M. Mapes, A. Marusic, K. Mernick, C. Mi, R.J. Michnoff, T.A. Miller, M.G. Minty, S.K. Nayak, L.K. Nguyen, M.C. Paniccia, I. Pinayev, S. Polizzo, V. Ptitsyn, T. Rao, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, L. Smart, K.S. Smith, H. Song, A. Sukhanov, R. Than, P. Thieberger, S.M. Trabocchi, J.E. Tuozzolo, P. Wanderer, E. Wang, G. Wang, D. Weiss, B.P. Xiao, T. Xin, W. Xu, A. Zaltsman, H. Zhao, Z. Zhao
    BNL, Upton, New York, USA
 
  Funding: Work supported by the U.S. Department of Energy.
The Low Energy RHIC electron Cooler (LEReC) was recently constructed and commissioned at BNL. The LEReC is the first electron cooler based on the RF acceleration of electron bunches (previous electron coolers all used DC beams). Bunched electron beams are necessary for cooling hadron beams at high energies. The challenges of such an approach include generation of electron beams suitable for cooling, delivery of electron beams of the required quality to the cooling sections without degradation of beam emittances and energy spread, achieving required small angles between electrons and ions in the cooling sections, precise energy matching between the two beams, high-current operation of the electron accelerator, as well as several physics effects related to bunched beam cooling. Following successful commissioning of the electron accelerator in 2018, the focus of the LEReC project in 2019 was on establishing electron-ion interactions and demonstration of cooling process using electron energy of 1.6MeV (ion energy of 3.85GeV/n), which is the lowest energy of interest. Here we report on the first demonstration of Au ion cooling in RHIC using this new approach.
 
slides icon Slides THZBA5 [16.417 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THZBA5  
About • paper received ※ 16 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)