FIFTH-ORDER MOMENT CORRECTION FOR BEAM POSITION AND SECOND-ORDER MOMENT MEASUREMENT

K. Yanagida*, S. Suzuki, and H. Hanaki, JASRI, Sayo, Hyogo, Japan

Abstract

For the precise measurement of beam positions and second-order moments, we adopted a recursive correction with up to fifth-order moments for a measurement using a six-electrode BPM at SPring-8 linac. The higher-order correction terms are provided by considering an effect from higher-order moments on the output voltages of BPM. We found huge calculation error in a simulated correlation plot between set and calculated vertical positions without correction. This error is also found in a similar correlation plot between the measured vertical positions with fifth-order moment correction and without it.

INTRODUCTION

For measurements of beam position and second-order relative moments [1], six-electrode BPMs with circular crosssection have been installed at SPring-8 linac [2].

To obtain the relative attenuation factors between the BPM electrodes, we developed a beam-based calibration method, i.e., entire calibration. During the entire calibration, beams must be located at a position more than 4 mm from the BPM center.

We also developed a recursive correction scheme with up to fifth-order moments to improve the accuracy of the entire calibration when a beam was located far from the BPM center [3].

Previously, correction terms were usually expressed by the higher-order polynomials of the beam positions for obtaining (calculating) precise beam positions [4]. Because the correction terms came from higher-order moments that appeared on the output voltages of BPM, we constructed a new correction scheme whose correction terms were expressed by higher-order moments.

This paper describes the theoretical features of the correction scheme, the simulation (calculation) by an image charge method, and the experiment results using electron beams at SPring-8 linac.

THEORETICAL FEATURES

Electric Field Calculation

Figure 1 shows the structure of a six-electrode BPM with a circular cross-section that is used at SPring-8 linac. Inner radius R is 16 mm , and the shared radius of each electrode is $6 / \pi$.

Suppose an M-particle system where b_{N} and β_{N} are the distance from the BPM center and an argument from the x -axis for N th-charged particles (Fig. 1).

[^0]

Figure 1: Structure of six-electrode BPM with a typical three-particle system.

Because the electric field on inner surface $E(\theta)$ is a superposition of the electric field generated by all the charged particles, i.e., a beam, $E(\theta)$ is written as follows in Eq. (1) [1]:

$$
\begin{align*}
E(\theta) & \propto M+2 \sum_{n=1}^{\infty} \sum_{N=1}^{M} \frac{p_{N n} \cos n \theta+q_{N n} \sin n \theta}{R^{n}}, \\
& \propto 1+2 \sum_{n=1}^{\infty} \frac{P_{n} \cos n \theta+Q_{n} \sin n \theta}{R^{n}} \tag{1}\\
p_{N n} & =b_{N}^{n} \cos n \beta_{N}, q_{N n}=b_{N}^{n} \sin n \beta_{N} \\
P_{n} & =\frac{1}{M} \sum_{N=1}^{M} p_{N n}, Q_{n}=\frac{1}{M} \sum_{N=1}^{M} q_{N n}
\end{align*}
$$

In Eq. (1), $p_{N n}$ and $q_{N n}$ are the n th-order moments of the N th-charged particle, and P_{n} and Q_{n} are the n th-order absolute moments [1] of the beam.

Output Voltages from Electrode

The output voltage from the d th electrode $(1 \leqq d \leqq 6)$ is written as Eq. (2) using geometrical factors $c_{d n}, s_{d n}$:

$$
\begin{align*}
V_{d} & \propto R \int_{(4 d-3) \pi / 12}^{(4 d-1) \pi / 12} E(\theta) d \theta=\frac{\pi}{12}+\sum_{n=1}^{\infty} \frac{c_{d n} P_{n}+s_{d n} Q_{n}}{R^{n}} \\
c_{d n} & =\int_{(4 d-3) \pi / 12}^{(4 d-1) \pi / 12} \cos n \theta d \theta, s_{d n}=\int_{(4 d-3) \pi / 12}^{(4 d-1) \pi / 12} \sin n \theta d \theta \tag{2}
\end{align*}
$$

If we treat moments up to the fifth-order, all of the geometrical factors can be summarized as $f_{n}, h_{n}(1 \leqq n \leqq 5)$ in

3 Technology

Eq. (3):

$$
\begin{align*}
f_{1} & =c_{11}=-c_{31}=-c_{41}=c_{61}, 0=c_{21}=c_{51}, \\
h_{1} & =s_{11}=s_{31}=-s_{41}=-s_{61}, 2 h_{1}=s_{21}=-s_{51}, \\
f_{2} & =c_{12}=c_{32}=c_{42}=c_{62}, 2 f_{2}=-c_{22}=-c_{52}, \\
h_{2} & =s_{12}=-s_{32}=s_{42}=-s_{62}, 0=s_{22}=s_{52}, \\
0 & =c_{13}=c_{23}=c_{33}=c_{43}=c_{53}=c_{63}, \tag{3}\\
h_{3} & =s_{13}=-s_{23}=s_{33}=-s_{43}=s_{53}=-s_{63}, \\
f_{4} & =-c_{14}=-c_{34}=-c_{44}=-c_{64}, 2 f_{4}=c_{24}=c_{54}, \\
h_{4} & =s_{14}=-s_{34}=s_{44}=-s_{64}, 0=s_{24}=s_{54}, \\
f_{5} & =-c_{15}=c_{35}=c_{45}=-c_{65}, 0=c_{25}=c_{55}, \\
h_{5} & =s_{15}=s_{35}=-s_{45}=-s_{65}, 2 h_{5}=s_{25}=-s_{55} .
\end{align*}
$$

Differences of Output Voltages

To obtain the beam's n th-order moments, we carefully choose the differences of output voltages C_{n}, S_{n} :

$$
\begin{align*}
C_{1} & =\frac{V_{1}-V_{3}-V_{4}+V_{6}}{V_{1}+V_{3}+V_{4}+V_{6}}, S_{1}=\frac{V_{1}+V_{3}-V_{4}-V_{6}}{V_{1}+V_{3}+V_{4}+V_{6}}, \\
C_{2} & =\frac{V_{1}+V_{3}+V_{4}+V_{6}-2\left(V_{2}+V_{5}\right)}{V_{1}+V_{3}+V_{4}+V_{6}+2\left(V_{2}+V_{5}\right)}, \\
S_{2} & =\frac{V_{1}-V_{3}+V_{4}-V_{6}}{V_{1}+V_{3}+V_{4}+V_{6}}, S_{3}=\frac{V_{1}-V_{2}+V_{3}-V_{4}+V_{5}-V_{6}}{V_{1}+V_{2}+V_{3}+V_{4}+V_{5}+V_{6}} . \tag{4}
\end{align*}
$$

Then we suppose that P_{n}, Q_{n} can be expressed as a product of an nth power of effective aperture radius $R_{C n P n}^{n}$, $R_{S n Q n}^{n}$ [2] and corrected difference $C_{n}^{\dagger}, S_{n}^{\dagger}$, as shown in Eq. (5):

$$
\begin{align*}
& P_{1}=\frac{R_{C 1 P 1}}{2} C_{1}^{\dagger}, Q_{1}=\frac{R_{S 1 Q 1}}{2} S_{1}^{\dagger}, P_{2}=\frac{R_{C 2 P 2}^{2}}{2} C_{2}^{\dagger}, \\
& Q_{2}=\frac{R_{S 2 Q 2}^{2}}{2} S_{2}^{\dagger}, Q_{3}=\frac{R_{S 3 Q 3}^{3}}{2} S_{3}^{\dagger} . \tag{5}\\
& R_{C 1 P 1}=\frac{\pi}{6 f_{1}} R, R_{S 1 Q 1}=\frac{\pi}{6 h_{1}} R, R_{C 2 P 2}=\sqrt{\frac{\pi}{9 f_{2}}} R, \\
& R_{S 2 Q 2}=\sqrt{\frac{\pi}{6 h_{2}}} R, R_{S 3 Q 3}=\sqrt[3]{\frac{\pi}{6 h_{3}}} R . \tag{6}
\end{align*}
$$

Relations Between $C_{n}^{\dagger}, S_{n}^{\dagger}$ and C_{n}, S_{n}

Because V_{d} is expressed as the linear combination of P_{n} and Q_{n} up to the infinite-order (Eq. (2)), we must confine the highest-order of the moments when P_{n}, Q_{n} is calculated using the relation of Eq. (5).

If we only confine the fundamental (smallest) order, i.e., without correction, we obtain the following relations between $C_{n}^{\dagger}, S_{n}^{\dagger}$ and C_{n}, S_{n}, as shown in Eq. (7):

$$
\begin{equation*}
C_{1}^{\dagger}=C_{1}, S_{1}^{\dagger}=S_{1}, C_{2}^{\dagger}=C_{2}, S_{2}^{\dagger}=S_{2}, S_{3}^{\dagger}=S_{3} \tag{7}
\end{equation*}
$$

If we confine the correction with up to third-order moments, we obtain the following recursive relations of Eq. (8):

$$
\begin{align*}
& C_{1}^{\dagger}=C_{1}\left(1+\frac{2 P_{2}}{R_{C 1 P 2 d}^{2}}\right), S_{1}^{\dagger}=S_{1}\left(1+\frac{2 P_{2}}{R_{S 1 P 2 d}^{2}}\right)-\frac{2 Q_{3}}{R_{S 1 Q 3 u}^{3}}, \\
& C_{2}^{\dagger}=C_{2}\left(1-\frac{2 P_{2}}{R_{C 2 P 2 d}^{2}}\right), S_{2}^{\dagger}=S_{2}\left(1+\frac{2 P_{2}}{R_{S 2 P 2 d}^{2}}\right), S_{3}^{\dagger}=S_{3} . \tag{8}
\end{align*}
$$

$$
\begin{align*}
& R_{C 1 P 2 d}=\sqrt{\frac{\pi}{6 f_{2}}} R, R_{S 1 P 2 d}=\sqrt{\frac{\pi}{6 f_{2}}} R, R_{S 1 Q 3 u}=\sqrt[3]{\frac{\pi}{6 h_{3}}} R, \\
& R_{C 2 P 2 d}=\sqrt{\frac{\pi}{3 f_{2}}} R, R_{S 2 P 2 d}=\sqrt{\frac{\pi}{6 f_{2}}} R . \tag{9}
\end{align*}
$$

If we confine the correction with up to fifth-order moments, we obtain the following recursive relations of Eq. (10):

$$
\begin{align*}
C_{1}^{\dagger} & =C_{1}\left(1+\frac{2 P_{2}}{R_{C 1 P 2 d}^{2}}-\frac{2 P_{4}}{R_{C 1 P 4 d}^{4}}\right)+\frac{2 P_{5}}{R_{C 1 P 5 u}^{5}}, \\
S_{1}^{\dagger} & =S_{1}\left(1+\frac{2 P_{2}}{R_{S 1 P 2 d}^{2}}-\frac{2 P_{4}}{R_{S 1 P 4 d}^{4}}\right)-\frac{2 Q_{3}}{R_{S 1 Q 3 u}^{3}}-\frac{2 Q_{5}}{R_{S 1 Q 5 u}^{5}}, \\
C_{2}^{\dagger} & =C_{2}\left(1-\frac{2 P_{2}}{R_{C 2 P 2 d}^{2}}+\frac{2 P_{4}}{R_{C 2 P 4 d}^{4}}\right)+\frac{2 P_{4}}{R_{C 2 P 4 u}^{4}}, \\
S_{2}^{\dagger} & =S_{2}\left(1+\frac{2 P_{2}}{R_{S 2 P 2 d}^{2}}-\frac{2 P_{4}}{R_{S 2 P 4 d}^{4}}\right)-\frac{2 Q_{4}}{R_{S 2 Q 4 u}^{4}}, S_{3}^{\dagger}=S_{3} . \\
R_{C 1 P 4 d} & =\sqrt[4]{\frac{\pi}{6 f_{4}}} R, R_{C 1 P 5 u}=\sqrt[5]{\frac{\pi}{6 f_{5}}} R, R_{S 1 P 4 d}=\sqrt[4]{\frac{\pi}{6 f_{4}}} R, \tag{10}\\
R_{S 1 Q 5 u} & =\sqrt[5]{\frac{\pi}{6 h_{5}}} R, R_{C 2 P 4 d}=\sqrt[4]{\frac{\pi}{3 f_{4}}} R, R_{C 2 P 4 u}=\sqrt[4]{\frac{\pi}{9 f_{4}}} R, \\
R_{S 2 P 4 d} & =\sqrt[4]{\frac{\pi}{6 f_{4}}} R, R_{S 2 Q 4 u}=\sqrt[4]{\frac{\pi}{6 h_{4}}} R . \tag{11}
\end{align*}
$$

SIMULATION

To evaluate the effect of the correction, we calculated vertical position Q_{1} by changing sets P_{1}, Q_{1}, and $P_{g 2}$ in the simulations. We regarded the other higher-order relative moments, $Q_{g 2}, P_{g 3}, Q_{g 3}, P_{g 4}, Q_{g 4}, P_{g 5}$, and $Q_{g 5}$, as zero because only $P_{g 2}$ was widely varied by normal (not skew) quadrupole magnets. Therefore, the higher-order absolute moments were explicitly written as Eq. (12):

$$
\begin{align*}
P_{2} & =p_{G 2}+P_{g 2}, p_{G 2}=P_{1}^{2}-Q_{1}^{2}, Q_{2}=q_{G 2}=2 P_{1} Q_{1}, \\
P_{3} & =p_{G 3}+3 p_{G 1} P_{g 2}, p_{G 3}=P_{1}^{3}-3 P_{1} Q_{1}^{2}, p_{G 1}=P_{1}, \\
Q_{3} & =q_{G 3}+3 q_{G 1} P_{g 2}, q_{G 3}=3 P_{1}^{2} Q_{1}-Q_{1}^{3}, q_{G 1}=Q_{1}, \\
P_{4} & =p_{G 4}+6 p_{G 2} P_{g 2}, p_{G 4}=P_{1}^{4}-6 P_{1}^{2} Q_{1}^{2}+Q_{1}^{4}, \tag{12}\\
Q_{4} & =q_{G 4}+6 q_{G 2} P_{g 2}, q_{G 4}=4 P_{1}^{3} Q_{1}-4 P_{1} Q_{1}^{3}, \\
P_{5} & =p_{G 5}+10 p_{G 3} P_{g 2}, p_{G 5}=P_{1}^{5}-10 P_{1}^{3} Q_{1}^{2}+5 P_{1} Q_{1}^{4}, \\
Q_{5} & =q_{G 5}+10 q_{G 3} P_{g 2}, q_{G 5}=5 P_{1}^{4} Q_{1}-10 P_{1}^{2} Q_{1}^{3}+Q_{1}^{5} .
\end{align*}
$$

The ranges of sets P_{1}, Q_{1}, and $P_{g 2}$ are shown in Eq. (13):

$$
\begin{align*}
-4 \leqq \text { Set } P_{1} & \leqq 4[\mathrm{~mm}] \text { by } 0.1 \mathrm{~mm} \text { steps, } \\
-4 \leqq \text { Set } Q_{1} & \leqq 4[\mathrm{~mm}] \text { by } 0.1 \mathrm{~mm} \text { steps, } \tag{13}\\
\text { Set } P_{g 2} & =-2,11\left[\mathrm{~mm}^{2}\right] .
\end{align*}
$$

$E(\theta)$ was derived from two-dimensional electrostatic potentials evaluated by applying a method of images with a mirror point charge [1]. For providing $P_{g 2}$ to the simulation we assumed an electric quadrupole.

3 Technology

The simulated correlation plots are shown in Figs. 2, 3, and 4. The abscissa denotes set Q_{1}, and the ordinate denotes simulated Q_{1}. These figures only display the negative regions of $Q_{1}\left(-4 \leqq\right.$ set Q_{1}, simulated $\left.Q_{1} \leqq 0\right)$.

Figure 2: Simulated Q_{1} without correction using Eq. (7).

Figure 3: Simulated Q_{1} with up to third-order moment correction using Eq. (8).

Figure 4: Simulated Q_{1} with up to fifth-order moment correction using Eq. (10).

Small calculation error was shown in the simulated Q_{1} with up to fifth-order moment correction (Fig. 4), but huge calculation error was found in the simulated Q_{1} without correction (Fig. 2).

COMPARISON WITH EXPERIMENT

To prove the correction's validity, we carried out a beam experiment at SPring-8 linac. The electron beams were
swept by horizontal and vertical steering magnets in a $-4 \leqq$ $P_{1} \leqq 4[\mathrm{~mm}]$ and $-4 \leqq Q_{1} \leqq 4[\mathrm{~mm}]$ positional region.

Since we cannot determine the true beam positions, we chose Q_{1}, which was corrected with up to fifth-order moments instead of set Q_{1} as the parameter of abscissa (Figs. 5 and 6).

Figure 5: Correlation plot between Q_{1} with up to fifth-order moment correction and Q_{1} without it.

(a) $P_{g 2}=-2\left[\mathrm{~mm}^{2}\right]$
(b) $P_{g 2}=11\left[\mathrm{~mm}^{2}\right]$

Figure 6: Correlation plot between Q_{1} with up to fifth-order moment correction and Q_{1} with up to third-order moment correction.

In the figures, the small red circles (simulation) and the large black circles (experiment) show good agreement, and this consistency proves the validity of higher-order moment correction.

REFERENCES

[1] K. Yanagida et al., Phys. Rev. ST Accel. Beams 15, 012801 (2012).
[2] K. Yanagida et al., "Design and Beam Test of Six-electrode BPMs for Second-Order Moment Measurement," Proc. of the 26th Int. Linac Conf., Tel-Aviv, Sept. 2012, pp. 464-466.
[3] K. Yanagida et al., "Emittance Measurement for SPring-8 Linac Using Four Six-Electrode BPMs," Proc. of the 27 th Int. Linac Conf., Geneva, Aug. 2014, pp. 279-281.
[4] K. Satoh and M. Tejima, "Calibration of KEKB Beam Position Monitors," Proc. of the 19th Particle Accel. Conf., Vancouver, May 1997, pp. 2087-2089.

[^0]: ken@ spring8.or.jp

