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Abstract

For the precise measurement of beam positions and

second-order moments, we adopted a recursive correction

with up to fifth-order moments for a measurement using

a six-electrode BPM at SPring-8 linac. The higher-order

correction terms are provided by considering an effect from

higher-order moments on the output voltages of BPM. We

found huge calculation error in a simulated correlation plot

between set and calculated vertical positions without cor-

rection. This error is also found in a similar correlation

plot between the measured vertical positions with fifth-order

moment correction and without it.

INTRODUCTION

For measurements of beam position and second-order rel-

ative moments [1], six-electrode BPMs with circular cross-

section have been installed at SPring-8 linac [2].

To obtain the relative attenuation factors between the BPM

electrodes, we developed a beam-based calibration method,

i.e., entire calibration. During the entire calibration, beams

must be located at a position more than 4 mm from the BPM

center.

We also developed a recursive correction scheme with

up to fifth-order moments to improve the accuracy of the

entire calibration when a beam was located far from the

BPM center [3].

Previously, correction terms were usually expressed by

the higher-order polynomials of the beam positions for ob-

taining (calculating) precise beam positions [4]. Because the

correction terms came from higher-order moments that ap-

peared on the output voltages of BPM, we constructed a new

correction scheme whose correction terms were expressed

by higher-order moments.

This paper describes the theoretical features of the correc-

tion scheme, the simulation (calculation) by an image charge

method, and the experiment results using electron beams at

SPring-8 linac.

THEORETICAL FEATURES

Electric Field Calculation

Figure 1 shows the structure of a six-electrode BPM with

a circular cross-section that is used at SPring-8 linac. Inner

radius R is 16 mm, and the shared radius of each electrode

is 6/π.

Suppose an M-particle system where bN and βN are the

distance from the BPM center and an argument from the

x-axis for Nth-charged particles (Fig. 1).

∗ ken@spring8.or.jp

O
x

y

R=16
θ

Electrode3

Electrode4

Electrode5

Electrode6

Electrode1

Electrode2

6
π_

36
π__

Particle1
Particle2

Particle3

b1 b2

β
1
β
2

b3

β
3

Figure 1: Structure of six-electrode BPM with a typical

three-particle system.

Because the electric field on inner surface E(θ) is a super-

position of the electric field generated by all the charged par-

ticles, i.e., a beam, E(θ) is written as follows in Eq. (1) [1]:

E(θ) ∝ M + 2

∞
∑

n=1

M
∑

N=1

pNn cos nθ + qNn sin nθ

Rn
,

∝ 1 + 2

∞
∑

n=1

Pn cos nθ +Qn sin nθ

Rn
,

pNn = bnN cos nβN, qNn = bnN sin nβN,

Pn =
1

M

M
∑

N=1

pNn, Qn =
1

M

M
∑

N=1

qNn.

(1)

In Eq. (1), pNn and qNn are the nth-order moments of the

Nth-charged particle, and Pn and Qn are the nth-order abso-

lute moments [1] of the beam.

Output Voltages from Electrode

The output voltage from the dth electrode (1≦d≦6) is

written as Eq. (2) using geometrical factors cdn, sdn:

Vd ∝ R

∫ (4d−1)π/12

(4d−3)π/12

E(θ)dθ =
π

12
+

∞
∑

n=1

cdnPn + sdnQn

Rn
,

cdn =

∫ (4d−1)π/12

(4d−3)π/12

cos nθdθ, sdn =

∫ (4d−1)π/12

(4d−3)π/12

sin nθdθ.

(2)

If we treat moments up to the fifth-order, all of the geo-

metrical factors can be summarized as fn, hn (1≦n≦5) in
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Eq. (3):

f1 = c11 = −c31 = −c41 = c61, 0 = c21 = c51,

h1 = s11 = s31 = −s41 = −s61, 2h1 = s21 = −s51,

f2 = c12 = c32 = c42 = c62, 2 f2 = −c22 = −c52,

h2 = s12 = −s32 = s42 = −s62, 0 = s22 = s52,

0 = c13 = c23 = c33 = c43 = c53 = c63,

h3 = s13 = −s23 = s33 = −s43 = s53 = −s63,

f4 = −c14 = −c34 = −c44 = −c64, 2 f4 = c24 = c54,

h4 = s14 = −s34 = s44 = −s64, 0 = s24 = s54,

f5 = −c15 = c35 = c45 = −c65, 0 = c25 = c55,

h5 = s15 = s35 = −s45 = −s65, 2h5 = s25 = −s55.

(3)

Differences of Output Voltages

To obtain the beam’s nth-order moments, we carefully

choose the differences of output voltages Cn, Sn:

C1 =
V1 − V3 − V4 + V6

V1 + V3 + V4 + V6

, S1 =
V1 + V3 − V4 − V6

V1 + V3 + V4 + V6

,

C2 =
V1 + V3 + V4 + V6 − 2(V2 + V5)

V1 + V3 + V4 + V6 + 2(V2 + V5)
,

S2 =
V1 − V3 + V4 − V6

V1 + V3 + V4 + V6

, S3 =
V1 − V2 + V3 − V4 + V5 − V6

V1 + V2 + V3 + V4 + V5 + V6

.

(4)

Then we suppose that Pn, Qn can be expressed as a prod-

uct of an nth power of effective aperture radius Rn
CnPn

,

Rn
SnQn

[2] and corrected difference C
†
n, S

†
n, as shown in

Eq. (5):

P1 =
RC1P1

2
C
†
1
, Q1 =

RS1Q1

2
S
†
1
, P2 =

R2
C2P2

2
C
†
2
,

Q2 =

R2
S2Q2

2
S
†
2
, Q3 =

R3
S3Q3

2
S
†
3
.

(5)

RC1P1 =
π

6 f1
R, RS1Q1 =

π

6h1

R, RC2P2 =

√

π

9 f2
R,

RS2Q2 =

√

π

6h2

R, RS3Q3 =
3

√

π

6h3

R.

(6)

Relations Between C
†
n , S

†
n and Cn, Sn

Because Vd is expressed as the linear combination of Pn

and Qn up to the infinite-order (Eq. (2)), we must confine

the highest-order of the moments when Pn, Qn is calculated

using the relation of Eq. (5).

If we only confine the fundamental (smallest) order, i.e.,

without correction, we obtain the following relations be-

tween C
†
n, S

†
n and Cn, Sn, as shown in Eq. (7):

C
†
1
= C1, S

†
1
= S1, C

†
2
= C2, S

†
2
= S2, S

†
3
= S3. (7)

If we confine the correction with up to third-order mo-

ments, we obtain the following recursive relations of Eq. (8):

C
†
1
= C1

(

1 +
2P2

R2
C1P2d

)

, S
†
1
= S1

(

1 +
2P2

R2
S1P2d

)

−
2Q3

R3
S1Q3u

,

C
†
2
= C2

(

1 −
2P2

R2
C2P2d

)

, S
†
2
= S2

(

1 +
2P2

R2
S2P2d

)

, S
†
3
= S3.

(8)

RC1P2d =

√

π

6 f2
R, RS1P2d =

√

π

6 f2
R, RS1Q3u =

3

√

π

6h3

R,

RC2P2d =

√

π

3 f2
R, RS2P2d =

√

π

6 f2
R.

(9)

If we confine the correction with up to fifth-order mo-

ments, we obtain the following recursive relations of

Eq. (10):

C
†
1
= C1

(

1 +
2P2

R2
C1P2d

−
2P4

R4
C1P4d

)

+

2P5

R5
C1P5u

,

S
†
1
= S1

(

1 +
2P2

R2
S1P2d

−
2P4

R4
S1P4d

)

−
2Q3

R3
S1Q3u

−
2Q5

R5
S1Q5u

,

C
†
2
= C2

(

1 −
2P2

R2
C2P2d

+

2P4

R4
C2P4d

)

+

2P4

R4
C2P4u

,

S
†
2
= S2

(

1 +
2P2

R2
S2P2d

−
2P4

R4
S2P4d

)

−
2Q4

R4
S2Q4u

, S
†
3
= S3.

(10)

RC1P4d =
4

√

π

6 f4
R, RC1P5u =

5

√

π

6 f5
R, RS1P4d =

4

√

π

6 f4
R,

RS1Q5u =
5

√

π

6h5

R, RC2P4d =
4

√

π

3 f4
R, RC2P4u =

4

√

π

9 f4
R,

RS2P4d =
4

√

π

6 f4
R, RS2Q4u =

4

√

π

6h4

R.

(11)

SIMULATION

To evaluate the effect of the correction, we calculated

vertical position Q1 by changing sets P1, Q1, and Pg2 in the

simulations. We regarded the other higher-order relative

moments, Qg2, Pg3, Qg3, Pg4, Qg4, Pg5, and Qg5, as zero

because only Pg2 was widely varied by normal (not skew)

quadrupole magnets. Therefore, the higher-order absolute

moments were explicitly written as Eq. (12):

P2 =pG2 + Pg2, pG2 = P2
1 − Q2

1, Q2 = qG2 = 2P1Q1,

P3 =pG3 + 3pG1Pg2, pG3 = P3
1 − 3P1Q2

1, pG1 = P1,

Q3 =qG3 + 3qG1Pg2, qG3 = 3P2
1Q1 − Q3

1, qG1 = Q1,

P4 =pG4 + 6pG2Pg2, pG4 = P4
1 − 6P2

1Q2
1 +Q4

1,

Q4 =qG4 + 6qG2Pg2, qG4 = 4P3
1Q1 − 4P1Q3

1,

P5 =pG5 + 10pG3Pg2, pG5 = P5
1 − 10P3

1Q2
1 + 5P1Q4

1,

Q5 =qG5 + 10qG3Pg2, qG5 = 5P4
1Q1 − 10P2

1Q3
1 +Q5

1.

(12)

The ranges of sets P1, Q1, and Pg2 are shown in Eq. (13):

−4 ≦ Set P1 ≦ 4 [mm] by 0.1 mm steps,

−4 ≦ Set Q1 ≦ 4 [mm] by 0.1 mm steps,

Set Pg2 = −2, 11 [mm2].

(13)

E(θ) was derived from two-dimensional electrostatic po-

tentials evaluated by applying a method of images with a

mirror point charge [1]. For providing Pg2 to the simulation

we assumed an electric quadrupole.
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The simulated correlation plots are shown in Figs. 2, 3,

and 4. The abscissa denotes set Q1, and the ordinate de-

notes simulated Q1. These figures only display the negative

regions of Q1 (−4 ≦ set Q1, simulated Q1 ≦ 0).

(a) Pg2 = −2 [mm2] (b) Pg2 = 11 [mm2]

Figure 2: Simulated Q1 without correction using Eq. (7).

(a) Pg2 = −2 [mm2] (b) Pg2 = 11 [mm2]

Figure 3: Simulated Q1 with up to third-order moment cor-

rection using Eq. (8).

(a) Pg2 = −2 [mm2] (b) Pg2 = 11 [mm2]

Figure 4: Simulated Q1 with up to fifth-order moment cor-

rection using Eq. (10).

Small calculation error was shown in the simulated Q1

with up to fifth-order moment correction (Fig. 4), but huge

calculation error was found in the simulated Q1 without

correction (Fig. 2).

COMPARISON WITH EXPERIMENT

To prove the correction’s validity, we carried out a beam

experiment at SPring-8 linac. The electron beams were

swept by horizontal and vertical steering magnets in a −4 ≦

P1 ≦ 4 [mm] and −4 ≦ Q1 ≦ 4 [mm] positional region.

Since we cannot determine the true beam positions, we

chose Q1, which was corrected with up to fifth-order mo-

ments instead of set Q1 as the parameter of abscissa (Figs. 5

and 6).

(a) Pg2 = −2 [mm2] (b) Pg2 = 11 [mm2]

Figure 5: Correlation plot between Q1 with up to fifth-order

moment correction and Q1 without it.

(a) Pg2 = −2 [mm2] (b) Pg2 = 11 [mm2]

Figure 6: Correlation plot between Q1 with up to fifth-order

moment correction and Q1 with up to third-order moment

correction.

In the figures, the small red circles (simulation) and the

large black circles (experiment) show good agreement, and

this consistency proves the validity of higher-order moment

correction.
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