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INTRODUCTION

For measurements of beam position and second-order
relative moments, six-electrode BPMs with circular
cross-section have been installed at SPring-8 linac.

To obtain the relative attenuation factors between the
BPM electrodes, we developed a beam-based calibration
method, i.e., entire calibration. During the entire calibration,
beams must be located at a position more than 4 mm from
the BPM center.

We also developed a recursive correction scheme with
up to fifth-order moments to improve the accuracy of the
entire calibration when a beam was located far from the
BPM center.

Previously, correction terms were usually expressed by
the higher-order polynomials of the beam positions for
obtaining (calculating) precise beam positions. Because
the correction terms came from higher-order moments that
appeared on the output voltages of BPM, we constructed a
new correction scheme whose correction terms were
expressed by higher-order moments.

This paper describes the theoretical features of the
correction scheme, the simulation (calculation) by an image
charge method, and the experiment results using electron
beams at SPring-8 linac.
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THEORETICAL FEATURES

oE( 0 ) : Electric Field (Distribution) on the Inner Surface of BPM
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We suppose that Pn, Qn can be expressed as a product of

an nth power of effective aperture radius RGnpn, RSnan and
corrected difference Ch, Sh. (5)
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Vd in Eq. (2) is substituted into Eq. (4). But Vd s
expressed as the linear combination of Pn and Qn up to
the infinite-order. How much order do we confine?

If we only confine the fundamental (smallest) order, i.e
without correction;
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If we confine the correction with up to fifth-order
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U Treat Moments up to 5th—Order
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SIMULATION

Variable : P; (Horizontal Position), Q; (Vertical Position) and Pg2

Regarded Other Relative Moments,
Qg2, Pgs, Qgs, Pga, Qgs, Pgs and Qgs as Zero
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E( 6 ) Calculation : Method of Images with a Mirror Point Charge
Pg2 Calculation : Assume an Electric Quadrupole

Range of Variables
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Electric Quadrupole.

6EBPM used for the experiment.
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Simulated Q without correction using Eq. (7).
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Simulated Q; with up to third-order moment correction
using Eq. (8).
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Simulated Qq
using Eq. (10).

COMPARISON WITH EXPERIMENT

with up to fifth-order moment correction
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Horizontal positions (P¢) and vertical positions (Q;). Small
red circles show the result of sumulation with up to
fifth-order moment correction, and large black circles show
the result of experiment with up to fifth-order moment

correction.
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Correlation plot between Q; with up to fifth-order moment
correction and Qq without correction.
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Correlation plot between Q; with up to fifth-order moment
correction and Qq with up to third-order moment correction.

In the figures, the small red circles (simulation) and the
large black circles (experiment) show good agreement, and
this consistency proves the validity of higher-order moment
correction.



