FIFTH-ORDER MOMENT CORRECTION FOR BEAM POSITION AND SECOND-ORDER MOMENT MEASUREMENT

Kenichi YANAGIDA, Shisuke SUZUKI and Hirofumi HANAKI

 Japan Synchrotron Radiation Research Institute / SPring-8
INTRODUCTION

For measurements of beam position and second-order relative moments, six-electrode BPMs with circula cross-section have been installed at SPring-8 linac.

To obtain the relative attenuation factors between the BPM electrodes, we developed a beam-based calibration method, i.e., entire calibration. During the entire calibration beams must be located at a position more than 4 mm from the BPM center.

We also developed a recursive correction scheme with up to fifth-order moments to improve the accuracy of the entire calibration when a beam was located far from the BPM center

Previously, correction terms were usually expressed by the higher-order polynomials of the beam positions for obtaining (calculating) precise beam positions. Because the correction terms came from higher-order moments that appeared on the output voltages of BPM, we constructed a appeared on correction scheme whose correction terms were new correction scheme whose co

This paper describes the theoretical features of the correction scheme, the simulation (calculation) by an image charge method, and the experiment results using electron beams at SPring-8 linac.

THEORETICAL FEATURES

$\mathrm{E}(\theta)$: Electric Field (Distribution) on the Inner Surface of BPM

$$
\begin{aligned}
E(\theta) & \propto M+2 \sum_{n=1}^{\infty} \sum_{N=1}^{M} \frac{p_{N n} \cos n \theta+q_{N n} \sin n \theta}{R^{n}} \\
& \propto 1+2 \sum_{n=1}^{\infty} \frac{P_{n} \cos n \theta+Q_{n} \sin n \theta}{R^{n}} \\
p_{N n} & =b_{N}^{n} \cos n \beta_{N}, q_{N n}=b_{N}^{n} \sin n \beta_{N} \\
P_{n} & =\frac{1}{M} \sum_{N=1}^{M} p_{N n}, Q_{n}=\frac{1}{M} \sum_{N=1}^{M} q_{N n}
\end{aligned}
$$

- $V_{d}(d=1, \cdots, 6)$: Output Voltage form Electrode d
$V_{d} \propto R \int_{(4 d-3) \pi / 12}^{(4 d-1) \pi / 12} E(\theta) d \theta=\frac{\pi}{12}+\sum_{n=1}^{\infty} \frac{c_{d n} P_{n}+s_{d n} Q_{n}}{R^{n}}$ $c_{d n}=\int_{(4 d-3) \pi / 12}^{(4 d-1) \pi / 12} \cos n \theta d \theta, s_{d n}=\int_{(4 d-3) \pi / 12}^{(4 d-1) \pi / 12} \sin n \theta d \theta$
\downarrow Treat Moments up to 5th-Order
$f_{1}=c_{11}=-c_{31}=-c_{41}=c_{61}, 0=c_{21}=c_{51}$,
$h_{1}=s_{11}=s_{31}=-s_{41}=-s_{61}, 2 h_{1}=s_{21}=-s_{51}$
$f_{2}=c_{12}=c_{32}=c_{42}=c_{62}, 2 f_{2}=-c_{22}=-c_{52}$,
$h_{2}=s_{12}=-s_{32}=s_{42}=-s_{62}, 0=s_{22}=s_{52}$,
$0=c_{13}=c_{23}=c_{33}=c_{43}=c_{53}=c_{63}$,
(3)
$h_{3}=s_{13}=-s_{23}=s_{33}=-s_{43}=s_{53}=-s_{63}$,
$f_{4}=-c_{14}=-c_{34}=-c_{44}=-c_{64}, 2 f_{4}=c_{24}=c_{54}$,
$h_{4}=s_{14}=-s_{34}=s_{44}=-s_{64}, 0=s_{24}=s_{54}$,
$f_{5}=-c_{15}=c_{35}=c_{45}=-c_{65}, 0=c_{25}=c_{55}$
$h_{5}=s_{15}=s_{35}=-s_{45}=-s_{65}, 2 h_{5}=s_{25}=-s_{55}$.
- Difference of Output Voltage Cn, Sn

$$
\begin{align*}
& C_{1}=\frac{V_{1}-V_{3}-V_{4}+V_{6}}{V_{1}+V_{3}+V_{4}+V_{6}}, \\
& S_{1}=\frac{V_{1}+V_{3}-V_{4}-V_{6}}{V_{1}+V_{3}+V_{4}+V_{6}}, \tag{2}\\
& C_{2}=\frac{V_{1}+V_{3}+V_{4}+V_{6}-2\left(V_{2}+V_{5}\right)}{V_{1}+V_{3}+V_{4}+V_{6}+2\left(V_{2}+V_{5}\right)}, \\
& S_{2}=\frac{V_{1}-V_{3}+V_{4}-V_{6}}{V_{1}+V_{3}+V_{4}+V_{6}}, \\
& S_{3}=\frac{V_{1}-V_{2}+V_{3}-V_{4}+V_{5}-V_{6}}{V_{1}+V_{2}+V_{3}+V_{4}+V_{5}+V_{6}} .
\end{align*}
$$

Abstract

\qquad

6EBPM.

We suppose that Pn, Qn can be expressed as a product of an nth power of effective aperture radius $\mathrm{R}_{\mathrm{n} \text { n }}^{\mathrm{n}}$, $\mathrm{R}_{\text {Rnan }}^{\mathrm{n}}$ and corrected difference $\mathrm{C}_{n}^{\text {th, }} \mathrm{Sn}$.
(5)
$P_{1}=\frac{R_{C 1 P 1}}{2} C_{1}^{\dagger}, Q_{1}=\frac{R_{S 101}}{2} S_{1}^{\dagger}, P_{2}=\frac{R_{C 2 P 2}^{2}}{2} C_{2}^{\dagger}, Q_{2}=\frac{R_{S 2 Q 2}^{2}}{2} S_{2}^{\dagger}, Q_{3}=\frac{R_{s 3 Q 3}^{3}}{2} S_{3}^{\dagger}$.

$$
\begin{align*}
& \text { Where; } \\
& \qquad \begin{array}{l}
R_{C 1 P 1}=\frac{\pi}{6 f_{1}} R=\underset{[\mathrm{mm}]}{18.69, R_{S 1 Q 1}=} \frac{\pi}{6 h_{1}} R=\underset{[\mathrm{mm}]}{32.37, R_{C 2 P 2}=\sqrt{\frac{\pi}{9 f_{2}}} R=\underset{[\mathrm{mm}]}{18.91,}} \\
R_{S 2 Q 2}=\sqrt{\frac{\pi}{6 h_{2}}} R=\underset{[\mathrm{mm}]}{17.59, R_{S 3 Q 3}=\sqrt[3]{\frac{\pi}{6 h_{3}}} R=\underset{[\mathrm{mm}]}{16.57 .}}
\end{array} .
\end{align*}
$$

Vd in Eq. (2) is substituted into Eq. (4). But Vd is expressed as the linear combination of Pn and Qn up to the infinite-order. How much order do we confine?

If we only confine the fundamental (smallest) order, i.e. without correction
$C_{1}^{\dagger}=C_{1}, S_{1}^{\dagger}=S_{1}, C_{2}^{\dagger}=C_{2}, S_{2}^{\dagger}=S_{2}, S_{3}^{\dagger}=S_{3}$. (7)
If we confine the correction with up to third-order
$C_{1}^{\dagger}=C_{1}\left(1+\frac{2 P_{2}}{R_{C 1 P 2 d}^{2}}\right), S_{1}^{\dagger}=S_{1}\left(1+\frac{2 P_{2}}{R_{S 1 P 2 d}^{2}}\right)-\frac{2 Q_{3}}{R_{S 1 Q 3 u}^{3}}$
$C_{2}^{\dagger}=C_{2}\left(1-\frac{2 P_{2}}{R_{C 2 P 2 d}^{2}}\right), S_{2}^{\dagger}=S_{2}\left(1+\frac{2 P_{2}}{R_{S 2 P 2 d}^{2}}\right), S_{3}^{\dagger}=S_{3}$.
Where;
$R_{C 1 P 2 d}=\sqrt{\frac{\pi}{6 f_{2}}} R=\underset{[\mathrm{mm}]}{23.16}, R_{S T P 2 d}=\sqrt{\frac{\pi}{6 f_{2}}} R=\underset{[\mathrm{mm}]}{23.16}, R_{\text {S193u }}=\sqrt[3]{\frac{\pi}{6 h_{3}}} R=\underset{[\mathrm{mm}]}{16.57}$,
$R_{C 2 P 2 d}=\sqrt{\frac{\pi}{3 f_{2}}} R=\underset{[\mathrm{mm}]}{32.75, R_{S 2 P 2 d}}=\sqrt{\frac{\pi}{6 f_{2}}} R=\underset{[\mathrm{mm}]}{23.16}$
If we confine the correction with up to fifth-order moments;
$C_{1}^{\dagger}=C_{1}\left(1+\frac{2 P_{2}}{R_{C 1 P 2 d}^{2}}-\frac{2 P_{4}}{R_{C 1 P 4 d}^{4}}\right)+\frac{2 P_{5}}{R_{C 1 P 5 u}^{5}}$,
$S_{1}^{\dagger}=S_{1}\left(1+\frac{2 P_{2}}{R_{S 1 P 2 d}^{2}}-\frac{2 P_{4}}{R_{S 1 P 4 d}^{4}}\right)-\frac{2 Q_{3}}{R_{S 1 Q 3 u}^{3}}-\frac{2 Q_{5}}{R_{S 1 Q 5 u}^{5}}$,
$C_{2}^{\dagger}=C_{2}\left(1-\frac{2 P_{2}}{R_{C 2 P 2 d}^{2}}+\frac{2 P_{4}}{R_{C 2 P 4 d}^{4}}\right)+\frac{2 P_{4}}{R_{C 2 P 4 u}^{4}}$,
$\underset{2}{S_{2}^{\dagger}}=S_{2}\left(1+\frac{2 P_{2}}{R_{S 2 P 2 d}^{2}}-\frac{2 P_{4}}{R_{S 2 P 4 d}^{4}}\right)-\frac{2 Q_{4}}{R_{S 2 Q 4 u}^{4}}, S_{3}^{\dagger}=S_{3}$. $R_{C 1 P 4 d}=\sqrt[4]{\frac{\pi}{6 f_{4}}} R=19.95, R_{C 1 P 5 u}=\sqrt[5]{\frac{\pi}{6 f_{5}}} R=17.50, R_{S \text { PP } 4 d}=\sqrt[4]{\frac{\pi}{6 f_{4}}} R=19.95$, $R_{\text {S195u }}=\sqrt[5]{\frac{\pi}{6 h_{5}}} R=\underset{[\mathrm{mm}]}{19.53, R_{C 2 P 4 d}}=\sqrt[4]{\frac{\pi}{3 f_{4}}} R=\underset{[\mathrm{mm}]}{23.73, R_{C 2 P 4 u}}=\sqrt[4]{\frac{\pi}{9 f_{4}}} R=\underset{[\mathrm{mm}]}{18.03}$, $R_{\text {S2P } 4 d}=\sqrt[4]{\frac{\pi}{6 f_{4}}} R=\underset{[\mathrm{mm}]}{19.95, R_{\text {S2Q4 }}}=\sqrt[4]{\frac{\pi}{6 h_{4}}} R=\underset{[\mathrm{mm}]}{17.39 .}$

SIMULATION

Variable : P_{1} (Horizontal Position), Q_{1} (Vertical Position) and Pg_{2} Regarded Other Relative Moments,
$\mathrm{Qg}_{2}, \mathrm{Pg}_{3}, \mathrm{Qg}_{3}, \mathrm{Pg}_{4}, \mathrm{Qg}_{4}, \mathrm{Pg}_{5}$ and Qg_{5} as Zero
$P_{2}=p_{G 2}+P_{g 2}, p_{G 2}=P_{1}^{2}-Q_{1}^{2}, Q_{2}=q_{G 2}=2 P_{1} Q_{1}$,
$P_{3}=p_{G 3}+3 p_{G 1} P_{g 2}, p_{G 3}=P_{1}^{3}-3 P_{1} Q_{1}^{2}, p_{G 1}=P_{1}$,
$Q_{3}=q_{G 3}+3 q_{G 1} P_{g 2}, q_{G 3}=3 P_{1}^{2} Q_{1}-Q_{1}^{3}, q_{G 1}=Q_{1}$,
$P_{4}=p_{G 4}+6 p_{G 2} P_{g 2}, p_{G 4}=P_{1}^{4}-6 P_{1}^{2} Q_{1}^{2}+Q_{1}^{4}$,
$Q_{4}=q_{G 4}+6 q_{G 2} P_{g 2}, q_{G 4}=4 P_{1}^{3} Q_{1}-4 P_{1} Q_{1}^{3}, \quad$ Exprescicit
$P_{5}=p_{G 5}+10 p_{G 3} P_{g 2}, p_{G 5}=P_{1}^{5}-10 P_{1}^{3} Q_{1}^{2}+5 P_{1} Q_{1}^{4}$,
$Q_{5}=q_{G 5}+10 q_{G 3} P_{g 2}, q_{G 5}=5 P_{1}^{4} Q_{1}-10 P_{1}^{2} Q_{1}^{3}+Q_{1}^{5}$.
$\mathrm{E}(\theta)$ Calculation : Method of Images with a Mirror Point Charge Pg_{2} Calculation : Assume an Electric Quadrupole Range of Variables
$-4 \leq \operatorname{Set} P_{1} \leq 4[\mathrm{~mm}]$ by 0.1 mm steps,
$-4 \leq \operatorname{Set} Q_{1} \leq 4[\mathrm{~mm}]$ by 0.1 mm steps,
Set $P_{g 2}=-2,11\left[\mathrm{~mm}^{2}\right]$. (13)

Simulated Q_{1} without correction using Eq. (7).

Simulated Q_{1} with up to third-order moment correction using Eq. (8).

Simulated Q_{1} with up to fifth-order moment correction using Eq. (10).

COMPARISON WITH EXPERIMENT

Horizontal positions (P_{1}) and vertical positions $\left(Q_{1}\right)$. Small red circles show the result of sumulation with up to fifth-order moment correction, and large black circles show the result of experiment with up to fifth-order moment correction.

Correlation plot between Q_{1} with up to fifth-order moment correction and Q_{1} without correction.

Correlation plot between Q_{1} with up to fifth-order moment correction and Q_{1} with up to third-order moment correction.
In the figures, the small red circles (simulation) and the large black circles (experiment) show good agreement, and this consistency proves the validity of higher-order moment correction.

