Keyword: detector
Paper Title Other Keywords Page
TUPLR047 Commissioning of XBox-3: A Very High Capacity X-band Test Stand klystron, LLRF, controls, FPGA 568
 
  • N. Catalán Lasheras, C.F. Eymin, J. Giner Navarro, G. McMonagle, S.F. Rey, A. Solodko, I. Syratchev, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • T. Argyropoulos, D. Esperante Pereira
    IFIC, Valencia, Spain
  • M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
 
  The Compact Linear Collider (CLIC) beam-based acceleration baseline uses high-gradient travelling wave accelerating structures at a frequency of 12 GHz. In order to prove the performance of these structures at high peak power and short pulse width RF, two klystron-based test facilities have been put in operation in the last years. The third X-band testing facility at CERN (Xbox3) has recently been commissioned and has tripled the number of testing slots available. Xbox3 uses a novel way of combining relatively low peak power (6 MW) but high average power klystron units whose power is steered to feed four testing slots with RF to the required power with a repetition rate of up to 400 Hz. Besides the repetition rate, peak power, pulse length and pulse shape can be customized to fit the test requirements. This novel way of combining pulsed RF high power can eventually be used for many other applications where multiple test slots are required.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2A02 Results From the Laserwire Emittance Scanner and Profile Monitor at CERN's Linac4 laser, electron, linac, emittance 715
 
  • T. Hofmann, U. Raich, F. Roncarolo
    CERN, Geneva, Switzerland
  • G.E. Boorman, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • G.E. Boorman, A. Bosco, S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
 
  A novel, non-invasive, H laser-wire scanner has been tested during the beam commissioning of CERN's new Linac4. Emittance measurements were performed at beam energies of 3 and 12 MeV with this new device and were found to closely match the results of conventional slit-grid methods. In 2015, the configuration of this laser-wire scanner was substantially modified. In the new setup the electrons liberated by the photo-detachment process are deflected away from the main beam and focused onto a single crystal diamond detector that can be moved in order to follow the laser beam scan. The beam profiles measured with the new laser-wire setup at 50 MeV, 80 MeV and 107 MeV are in good agreement with the measurements of nearby SEM grids and wire-scanners. The design of the final laser-wire scanner for the full 160 MeV beam energy will also be presented. In Linac4 two independent laser-wire devices will be installed in the transfer line to the BOOSTER ring. Each device will be composed of two parts: one hosting the laser-wire and the electron detector and the second hosting the segmented diamond detector used to acquire the transverse profiles of the H0 beamlets.  
slides icon Slides TH2A02 [3.164 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH2A02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3A01 Making Molecular Movie with MeV Electrons electron, laser, experiment, alignment 725
 
  • X. Shen, X.J. Wang
    SLAC, Menlo Park, California, USA
 
  SLAC launched the Ultrafast Electron Diffraction and Imaging (UED&UEM) initiative with the objective of developing the world leading ultrafast electron scattering instrumentation, complementary to the X-ray Free Electron Laser - Linac Coherent Light Source (LCLS). SLAC has developed a UED setup at the Accelerator Structure Test Area (ASTA), with the goal of providing MeV, 100-femtosecond-scale electron pulses to support an ultrafast science program [1]. The first UED ultrafast science experiment published in Nano Letters, where large amplitude wrinkles of monolayer MoS2 generated by the light pulse' more than 15 percent of the layer's thickness, was observed. This is the first time anyone has visualized these ultrafast atomic motions. Ultrafast MeV electrons also made it possible the direct measurement of phonon occupations as energy is transferred from electrons into the lattice in laser-heated gold (APL). The rotational wavepacket dynamics of laser-aligned nitrogen molecules were captured in gas-phase electron diffraction experiment using MeV electrons. We achieved an unprecedented combination of 100-fs (rms) temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule(Nature Communications).
[1] S. Weathersby, et al., Rev. Sci. Instrum. 86, 073702 (2015).
 
slides icon Slides TH3A01 [6.518 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH3A01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC029 Comissioning Results for a Subharmonic Buncher at REA linac, bunching, rfq, timing 833
 
  • D.M. Alt, J.F. Brandon, S.W. Krause, A. Lapierre, D.G. Morris, S. Nash, N.R. Usher, A.C.C. Villari, S.J. Williams, S. Zhao
    FRIB, East Lansing, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: NSF PHY-1102511
The reaccelerator facility (ReA) at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) offers a unique capability to study reactions with low-energy beams of rare isotopes. A beam from the coupled cyclotron facility is stopped in a gas stopping system, charge bred in an Electron Beam Ion Trap (EBIT), and then reaccelerated in a compact superconducting LINAC. The original beam repetition rate at the ReA targets was the same as the LINAC RF frequency of 80.5 MHz. In order to add the capability to bunch at a lower frequency (desirable for many types of experiments using time of flight data acquisitions) a 16.1 MHz buncher has been designed, constructed, and commissioned. This paper reports the results of the commissioning of the device, and outlines some future avenues for further improvement of the properties of the bunched beam.
 
poster icon Poster THPRC029 [0.903 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)