Keyword: LLRF
Paper Title Other Keywords Page
MOPLR072 The Effect of DTL Cavity Field Errors on Beam Spill at LANSCE DTL, cavity, linac, target 301
 
  • L. Rybarcyk, R.C. McCrady
    LANL, Los Alamos, New Mexico, USA
 
  The Los Alamos Neutron Science Center (LANSCE) accelerator comprises two (H+ and H) 750-keV Cockcroft-Walton style injectors, a 201.25-MHz, 100-MeV drift-tube linac (DTL) and an 805-MHz, 800-MeV coupled-cavity linac (CCL). As part of the LANSCE Risk Mitigation project a new digital low-level radio frequency (LLRF) control system is being deployed across the linac, starting with the DTL. Related to this upgrade, a study was performed where specific cavity field errors were simultaneously introduced in all DTL tanks about the nominal stable, low-spill, production set points to mimic LLRF control errors. The impact of these errors on the resultant beam spill was quantified for the nominal 100 μA, 800-MeV Lujan beam. We present the details of the measurement approach and results that show a rapid increase in total linac beam spill as DTL cavity field phase and amplitude errors are increased.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR010 Measurements and Analysis of Cavity Microphonics and Frequency Control in the Cornell ERL Main Linac Prototype Cryomodule cavity, linac, cryomodule, vacuum 488
 
  • M. Ge, N. Banerjee, J. Dobbins, R.G. Eichhorn, F. Furuta, G.H. Hoffstaetter, M. Liepe, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The Cornell Main Linac cryomodule (MLC) is a key component in the CBETA project. The SRF cavities with high loaded-Q in the MLC are very sensitive to microphonics from mechanical vibrations. Poor frequency stability of the cavities would dramatically increase the input RF power required to maintain stable accelerating fields in the SRF cavities. In this paper, we present detailed results from microphonics measurement for the cavities in the MLC, discuss dominant vibration sources, and show vibration damping results. The current microphonics level meets the CBETA requirement of a 36MeV energy gain without applying fast tuner compensation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR047 Commissioning of XBox-3: A Very High Capacity X-band Test Stand klystron, controls, detector, FPGA 568
 
  • N. Catalán Lasheras, C.F. Eymin, J. Giner Navarro, G. McMonagle, S.F. Rey, A. Solodko, I. Syratchev, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • T. Argyropoulos, D. Esperante Pereira
    IFIC, Valencia, Spain
  • M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
 
  The Compact Linear Collider (CLIC) beam-based acceleration baseline uses high-gradient travelling wave accelerating structures at a frequency of 12 GHz. In order to prove the performance of these structures at high peak power and short pulse width RF, two klystron-based test facilities have been put in operation in the last years. The third X-band testing facility at CERN (Xbox3) has recently been commissioned and has tripled the number of testing slots available. Xbox3 uses a novel way of combining relatively low peak power (6 MW) but high average power klystron units whose power is steered to feed four testing slots with RF to the required power with a repetition rate of up to 400 Hz. Besides the repetition rate, peak power, pulse length and pulse shape can be customized to fit the test requirements. This novel way of combining pulsed RF high power can eventually be used for many other applications where multiple test slots are required.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC009 IF-Mixture Performance During Cavity Conditioning at STF-KEK cavity, controls, feedback, flattop 785
 
  • S.B. Wibowo
    Sokendai, Ibaraki, Japan
  • T. Matsumoto, S. Michizono, T. Miura, F. Qiu
    KEK, Ibaraki, Japan
 
  The Superconducting rf Test Facility (STF) at High Energy Accelerator Research Organization (KEK) was built for research and development of the International Linear Collider (ILC). In order to satisfy the stability requirement of the accelerating field, a digital low-level RF (LLRF) control system is employed. In this control system, signal from a cavity is down-converted into intermediate frequency (IF) signal before being digitized by analog-to-digital converter (ADC). In order to reduce the required number of ADCs, we proposed a technique that combines several IFs and to be read by a single ADC. Signal reconstruction of each IF is performed by digital signal processing. The performance of this technique, which is named IF-mixture, is reported in this paper.  
poster icon Poster THPRC009 [0.992 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC011 Single LLRF for Multi-Harmonic Buncher controls, pick-up, experiment, radio-frequency 789
 
  • N.R. Usher, D.M. Alt, J.F. Brandon, D.G. Morris, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • D.M. Alt
    NSCL, East Lansing, Michigan, USA
 
  Funding: Work supported by Michigan State University, National Science Foundation: NSF Award Number PHY-1102511.
In this paper, a unique low level radio frequency (LLRF) controller designed for a multi-harmonic buncher (MHB) is presented. Different than conventional designs, the single LLRF output contains three RF frequencies (f1, f2 = 2*f1, f3 = 3*f1) and is fed to a wide band amplifier driving the MHB. The challenge is while driving f1, due to the non-linearity of the amplifier, the f2 and f3 terms will also be generated and will couple into the control of these two modes. Hence an active cancellation algorithm is used to suppress the nonlinear effect of the amplifier. It is demonstrated in a test that the designed LLRF is able to control the amplitude and phase of the three modes in-dependently.
 
poster icon Poster THPRC011 [1.944 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC012 Resonance Control System for the CEBAF Separator Upgrade cavity, controls, resonance, extraction 792
 
  • T. E. Plawski, R. Bachimanchi, B. Bevins, L. Farrish, C. Hovater, G.E. Lahti, M.J. Wissmann
    JLab, Newport News, Virgina, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of four new 748.5 MHz normal conducting deflecting cavities in the 5th pass extraction region. The RF system employs two digital LLRF systems controlling four normal conducting cavities in a vector sum setting. Cavity tune information of the individual cavities is obtained using a multiplexing scheme of the forward and reflected RF signals. Water skids equipped with heaters and valves are used to control resonance. A new FPGA-based hardware and EPICS-based predictive control algorithm has been developed to support reliable operation of the beam extraction process. This paper presents the architecture design of the existing hardware and software as well as a plan to develop a model predictive control system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR025 Modernisation of the 108 MHz RF Systems at the GSI UNILAC controls, cavity, operation, PLC 898
 
  • B. Schlitt, G. Eichler, S. Hermann, M. Hoerr, M. Mueh, S. Petit, A. Schnase, G. Schreiber, W. Vinzenz, J. Zappai
    GSI, Darmstadt, Germany
 
  A substantial modernisation of the RF systems at the 108 MHz Alvarez type post-stripper section of the GSI heavy ion linac UNILAC was launched in 2014 to prepare the existing facility for the future FAIR operation. A new 1.8 MW RF cavity amplifier prototype for low duty-cycle operation (2 ms pulse length at 10 Hz repetition rate) based on the widely-used tetrode TH558SC was designed and built by THALES and is under commissioning. A call for tenders was started for a 150 kW solid state driver amplifier. An RF test bench for the amplifier prototypes is in preparation at GSI including new control racks, commercial grid power supplies, and a modern PLC system for amplifier control. The existing powerful 1 MVA anode power supplies will be reused and are also being equipped with new PLC systems. The development of a digital low-level RF system based on the MTCA.4 standard and commercial vector modulator and FPGA boards was started. Status and details of the modernisation as well as first commissioning results of the new high power amplifier prototype will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR048 Development of a Digital LLRF Control System at LNL FPGA, controls, cavity, radio-frequency 966
 
  • S. Pavinato, M. Betti, D. Bortolato, F. Gelain, D. Marcato, D. Pedretti
    INFN/LNL, Legnaro (PD), Italy
  • M.A. Bellato, R. Isocrate
    INFN- Sez. di Padova, Padova, Italy
  • M. Bertocco
    UNIPD, Padova (PD), Italy
 
  The new Low-Level Radio Frequency (LLRF) control system for linear accelerator at Legnaro National Laboratories (LNL) of INFN is presently being commissioned. A digital Radio Frequency (RF) controller was implemented. Its goal is to stabilize the amplitude, the phase and the frequency of the superconducting cavities of the Linac. The resonance frequency of the low beta cavities is 80 MHz, while medium and high beta cavities resonate at 160 MHz. Each RF controller controls at the same time eight different cavities. The hardware complexity of the RF controller (RF IOC) is reduced by adopting direct RF sampling and the RF to baseband conversion method. The main hardware components are RF ADCs for the direct undersampling of the signals picked up from cavities, a Xilinx Kintek 7 FPGA for the signal processing and DACs for driving the power amplifiers and hence the cavities. In the RF IOC the serial communication between FPGA and ADCs and between FPGA and DACs is based on JESD204b standard. An RF front-end board (RFFE) is placed between cavities and the RF IOC. This is used to adapt the power level of the RF signal from the cavities to the ADCs and from the DACs to the power amplifiers. This paper addresses the LLRF control system focusing on the hardware design of the RF IOC and RFFE boards and on the first test results carried out with the new controller.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)