

Results From the Laserwire Emittance Scanner and Profile Monitor at CERN's Linac4

<u>T. Hofmann</u>, G. Boorman, A. Bosco, S. Gibson, K. Kruchinin (RHUL) E. Bravin, U. Raich, F. Roncarolo (CERN)

29.09.2016

Thomas Hofmann Royal Holloway, University of London CERN - Beam Instrumentation Group thomas.hofmann@cern.ch

CERN Accelerator overview

LINAC 4 overview - Outline

Concept of Non-destructive Emittance Meter

LINAC 4 overview

3 / 12 MeV Prototype Test Setup

Laser Injector - Setup

L/ NET

ROYAL HOLLOWAY

H⁰ Detection: Diamond Strip Detector

LXNET

ROYAL HOLLOW

- Nanosecond time response
- ~10⁴ e-/H⁰ sensitivity

Diamond Raw Signal & Signal Analysis

Diamond Raw Signal & Signal Analysis

- H⁰ particles originating from laserpulses
- Background from H⁰, produced by residual gas collisions
- $\int (V_{\text{Diamond}} \text{background fit}) \rightarrow 1 \text{ point in Phasespace}$

3 / 12 MeV Prototype Test Setup

Results – Comparison with Slit & Grid

Phase-space

Results – Comparison with Slit & Grid

Phase-space

LINAC 4 overview

50/80/107 MeV Testbench

ROYAL HOLLOWA

50/80/107 MeV – Profiling setup

- 90° Deflection of electrons by dipole magnet $\int B < 1mTm$
- Effect on main
 H⁻ beam negligible
- Electron collection with sCVD Diamond
- Resolution: 150 µm laser diameter

T. Hofmann et al., Proc IBIC 2015

sCVD Detector for Electron Detection

ROYAL HOLLOWAY

Installation on Testbench

L KNET

ROYAL HOLLOWAY

S. Gibson et al., Proc IBIC 2016

S. Gibson et al., Proc IBIC 2016

LINAC 4 overview

Final instrument design

Situation at LINAC4 top energy region

Final Laser Setup

LINAC4 Tunnel

- Simultaneous measurement of horizontal & vertical plane
 - Different fiber length \rightarrow 266 ns time difference

Laser and Electron Collector setup at beampipe

H⁰ Detector Station

CERN

- 2 pCVD diamond strip-detectors
 - 500 µm thickness
 - 2 sizes: 32 x 10 mm & 20 x 20 mm
 - Each with **28 strips** (350 μ m pitch) \rightarrow < 0.1 mrad resolution
- Horizontal & vertical detector one after another
 - Measurement of both planes at same time
- Detector mounted on actuator to move synchronous to laser scan (time for emittance scan: ~30s)

Summary

What has been done?

- Prototype tests
 - Robust fiber-based laser delivery no high power laser needed
 - H⁰ Detection based on a diamond detector
 - Test of Emittance Monitor at 3 and 12 MeV H⁻ beam
 - Test of **Profile** Meter at 50/80/107 MeV beam (based on Electron Detection)
- **Design of permanent installation** for online emittance and profile monitoring at LINAC4's top energy

What offers laser based H⁻ beam diagnostics?

- Reliable Transverse Profile and Emittance Measurements
- Over a wide range of beam energies (MeV...GeV) and intensities (nA...A)
- Non-destructive measurement
 - Beam losses < 1ppm
- No moving parts in main beam \rightarrow No danger of broken wires or similar
 - Automized periodically online monitoring

- T. Hofmann et al., Proc. of IPAC2013, Shanghai, China
- S. Gibson et al., Proc. of IBIC2013, Oxford, UK
- S. Gibson et al., Proc. of IBIC2014, Monterey, CA, USA
- T. Hofmann et al., Proc. of IBIC2014, Monterey, CA, USA
- R. Roncarolo et al., Proc. of LINAC2014, Geneva, Switzerland
- K. Kruchinin et al., Proc. of IPAC2015, Richmond, VA, USA
- T. Hofmann et al., Proc. of IBIC2015, Melbourne, Australia
- U. Raich et al., Proc. of IPAC2016, Busan, Korea
- S. Gibson et al., *Proc. of IBIC2016, Barcelona, Spain*
- <u>T. Hofmann et al., *PRST-AB, 18, 122801 (2015)*</u>
- <u>T. Hofmann et al., Nucl. Instrum. Methods A, 830C, Pg. 526-531, (2016)</u>

- BI-group at CERN
- LINAC4 operations team
- FETS collaboration
- Francesca Zocca, Benjamin Cheymol
- Elena Barrios Diaz, Peter Savage & Richard Epsom
- Jeremie Bauche & Alexey Vorozhtsov
- Christoph Gabor
- UK STFC grant ST/N001753/1
- Marie Curie Networks LA3NET and oPAC, grant numbers 289191 and 289485.

Thank you!