Paper | Title | Other Keywords | Page |
---|---|---|---|
MOZPLM1 | Operation Status and Upgrade of CSNS | linac, MMI, cavity, DTL | 23 |
|
|||
China Spallation Neutron Source (CSNS) accelerator complex consists of a front end, an 80MeV DTL linac, and a 1.6GeV Rapid Cycling Synchrotron (RCS).It is designed with a beam power of 100kW in the first phase and reserves upgrade capability to 500kW in the second phase. It has completed initial beam commissioning and has started user operation in 2018. And meanwhile the beam power is quickly going up from the initially above 10kW to 50kW during the user operation, and we can foresee that the designed beam power of 100 kW can be reached in the next year. This talk gives the most recent status of beam power ramping in CSNS, as well as future upgrade plan to increase the beam power up to 500 kW. | |||
![]() |
Slides MOZPLM1 [12.157 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZPLM1 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOZZPLM2 | A Bunch Structure Measurement of Muons Accelerated by RFQ Using a Longitudinal Beam-Profile Monitor With High Time Resolution | experiment, linac, background, electron | 37 |
|
|||
Funding: This work is supported by JSPS KAKENHI Grant Numbers JP15H03666, JP15H05742, JP16H03987, JP16J07784, JP18H03707 and JP18H05226. J-PARC E34 experiment intends to measure the anomalous magnetic moment and electric dipole moment of muon precisely by a different way from the previous experiment. In this experiment, a low-emittance muon beam is provided using the muons with the thermal energy and the four-stage linac. The demonstration of the first muon RF acceleration with an RFQ linac was conducted and the transverse profile of the accelerated muons was measured last year. As one of the remaining issues for the beam-diagnostic system, the longitudinal beam profile after the RFQ should be measured to match the profile to the designed acceptance of the subsequent accelerator. For this purpose, the new longitudinal beam monitor using the micro-channel plate is under development. The time resolution aims to be around 30 to 40 ps corresponding to 1 % of a period of an operation frequency of the accelerator, which is 324 MHz. On November 2018, the bunch structure of accelerated muons of 89 keV with the RFQ was measured using this monitor at the J-PARC MLF. The latest analysis result of this measurement will be reported in this poster. |
|||
![]() |
Slides MOZZPLM2 [2.618 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLM2 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPGW063 | Beam Dynamics Optimization in Drift Tube Linear Accelerator With Permanent Quadrupole Magnets | lattice, quadrupole, cavity, DTL | 234 |
|
|||
The research concerns the design of a drift tube linear accelerator (DTL) with permanent quadrupole magnets (PMQ) placed inside some of the drift tubes for focusing. The study was conducted using Comsol Multiphysics software, where electromagnetic fields and particle dy-namics in the cavity were calculated. The proton beam is accelerated up to 10 MeV. Initial beam is assumed to come from Radio Frequency Quadrupole accelerator (RFQ). Mathematical methods of control theory are used for particles dynamics optimization. Different focusing lattices are examined and variations of the gradient of the magnetic lenses are analyzed with respect to output beam parameters. Effectiveness of the optimization is estimated by the transmission rate and the emittance growth. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW063 | ||
About • | paper received ※ 16 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPRB023 | Design of the Wien-Filter Type Spin Rotator for the Low-Emittance Muon Beam | emittance, experiment, polarization, acceleration | 622 |
|
|||
Funding: This work was supported by JSPS KAKENHI Grant Numbers JP18J22129, JP18H03707. Muon linac is developed for the muon g-2/EDM experiment at J-PARC. In this experiment, ultra slow muon is accelerated to a momentum of 300 MeV/c with the four linac structures. This scheme offers new opportunity for precise measurements; it enables us to reverse muon polarization at early stage of acceleration. The reversal of polarization is a common method of precision polarization measurements as it can be used to identify or reduce systematic uncertainties dependent on time. It is necessary to accelerate muons and flip its spin without substantial emittance growth for the experimental requirement. As one of the candidates for our spin rotator, we are developing the Wien-filter type. In this poster, the design of the Wien-filter type spin rotator for the low emittance muon beam will be presented. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB023 | ||
About • | paper received ※ 16 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS006 | Final Results of the SPIRAL2 Injector Commissioning | emittance, LEBT, MMI, linac | 848 |
|
|||
The SPIRAL2 injector, made up of a 5 mA p-d ion source, a 1 mA heavy ion source (up to A/Q = 3) and a CW 0.75 MeV/u RFQ, has been commissioned in parallel with the superconducting linac installation. This com-missioning is successfully completed now and the Diag-nostic plate (D-plate) used to characterize the injector beams is removed. This paper presents the results ob-tained with the reference particles (H+, 4He2+, 18O6+ and 40Ar14+) and a comparison with the simulations. The connexion to the SC linac and the future linac beam commissioning is briefly described. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS006 | ||
About • | paper received ※ 12 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS008 | ESS RFQ: Construction Status and Power Couplers Qualification | vacuum, cavity, coupling, pick-up | 855 |
|
|||
The 352 MHz Radio Frequency Quadrupole (RFQ) for the European Spallation Source ERIC (ESS) will be de-livered during 2019. It is provided by CEA, IRFU, Sac-lay/France. It consists of five sections with a total length of 4.6 m and accelerates the proton beam from 75 keV up to 3.6 MeV. It will be feed with 1.6 MW peak power through two coaxial loop couplers. This paper will present the manufacturing status of the five sections and the qualification test of the RF power couplers. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS008 | ||
About • | paper received ※ 07 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS019 | End to End Simulations and Error Studies of the FAIR Proton Linac | linac, simulation, cavity, proton | 885 |
|
|||
The FAIR proton linac is developed as the high current proton injector for the future FAIR antiproton production chain at GSI. It will provide a 70 mA proton beam at an energy of 68 MeV to the SIS18 synchrotron. The linac consists of an ECR ion source, followed by a ladder RFQ and a normalconducting linac based on CH-type cavities. High beam currents and strict beam quality requirements were the main drivers for the beam dynamics design. To ensure matching between the individual sections and validate the injector design as a whole, end to end simulations were performed using TraceWin with 3D fieldmaps of the CH-linac. In this paper, the final cavity design, as well as the results of end to end simulations and error studies are discussed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS019 | ||
About • | paper received ※ 13 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS020 | Status of the FAIR Proton LINAC | proton, linac, cavity, simulation | 889 |
|
|||
For the production of Antiproton beams with sufficient intensities, a dedicated high-intensity 325 MHz Proton linac is currently under construction. The Proton linac shall deliver a beam current of up to 70 mA with an energy of 68 MeV for injection into SIS18. The source is designed for the generation of 100 mA beams. The Low-Energy Beam Transport line (LEBT) contains two magnetic solenoid lenses enclosing a diagnostics chamber, a beam chopper and a beam conus. A ladder 4-Rod RFQ and six normal conducting crossbar cavities of CCH and CH type arranged in two sections accelerate the beam to the final energy of 68 MeV. The technical design of the DTL CH cavities are presented and the commissioning measurements of the ion source are described. The construction and the procurement progress, the design and testing results of the key hardware are presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS020 | ||
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS023 | Conditioning of the Frontline Cavities of the MYRRHA Injector | cavity, electron, multipactoring, MMI | 895 |
|
|||
The MYRRHA Project (Multi-purpose hYbrid Research Reactor for High-tech Applications) in Mol, Belgium, is an upcoming accelerator driven system (ADS) for the transmutation of long-living radioactive waste. In the injector section of the accelerator, consisting of a 4-rod RFQ and a normal conducting CH-cavity section, the protons will be accelerated up to 17 MeV before entering the superconducting gap-spoke cavity section with an output energy of 600 MeV. A shortened test-injector with an output energy of 5.9 MeV is currently being installed at the SCK. CEN in Louvein-la- Neuve, Belgium. This test-injector serves the purpose of testing the reliability of the planned injector. When commissioning a cavity, it first has to be fed very little power to avoid damage to the structure by flashovers, discharges and multipacting. The power is then slowly increased up to full operation level. In this process, the surfaces are cleaned by heating/outgasing so that the effects disturbing operation described above do no longer occur. This paper will report on the status of the conditioning of the 176.1 MHz 4-rod RFQ up to 120 kW of the MYRRHA-injector and additional measurements concerning the gap voltage which are currently being performed at the SCK. CEN. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS023 | ||
About • | paper received ※ 13 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS027 | Conceptual Design of the Proton LINAC for the High Brilliance Neutron Source HBS | linac, cavity, neutron, proton | 910 |
|
|||
Due to the decommissioning of several research reactors there will be a severe drop in available neutrons for research in Europe in the next decade despite the commissioning of the European Spallation Source (ESS). Compact accelerator-based neutron sources (CANS) could close this gap. The High Brilliance Neutron Source (HBS) currently under development at Forschungszentrum Jülich is scalable in terms of beam energy and power due to its modular design. The driver Linac for HBS at will accelerate a 100 mA proton beam to 70 MeV. The Linac is operated with a beam duty cycle of up to 6% (11% RF duty cycle) and can simultaneously deliver three proton pulse lengths (384 Hz@52 mu-s, 96 Hz@208 mu-s and 24 Hz@832 mu-s) for three neutron production targets. In order to minimize the development effort and the technological risk, state-of-the-art technology of the MYRRHA injector is used. The front end of the HBS Linac consists of an ECR source, LEBT and a 2.5 MeV RFQ followed by a CH-DTL with 35 room temperature CH-cavities. All RF structures are operated at 176.1 MHz and are designed for high duty cycle. Solid-state amplifiers up to 500 kW are used as RF drivers. Due to the beam current and the high average beam power of up to 420 kW, particular attention is paid to beam dynamics. In order to minimize losses, a quasi-periodic lattice with constant negative phase is used. The contribution describes the conceptual design and the challenges of such a modern high power proton accelerator with high reliability and availability. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS027 | ||
About • | paper received ※ 07 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS032 | New Beam Dynamics Simulations for the FAIR p-Linac RFQ | simulation, linac, emittance, LEBT | 921 |
|
|||
The construction of a 3.3m Ladder-RFQ at IAP*, Goethe University Frankfurt, has been finished successfully last summer. This RFQ is designed to accelerate protons from 95 keV to 3.0 MeV according to the design parameters of the p-Linac at FAIR**. Along the acceleration section the parameters modulation, aperture and synchronous phase are varied linearly with cell number, which differs from former designs from IAP Frankfurt. The ratio of transversal vane curvature radius to mid-cell radial aperture and the vane radius itself are constant. The development of an adequate beam dynamics design was done with the aid of the RFQGen-code and in close collaboration with the IAP resonator design team. The RFQ beam dynamics design could be successfully reproduced with the TOUTATIS-routine of CEAs*** TraceWin-code. Several new beam dynamics simulations were performed on the design. Among these were current and Twiss parameter studies as well as simulations concerned with the investigation of longitudinal entrance and exit gap field effects. Others were based on new measurements in the LEBT-line performed by the GSI**** Ion Source Group in April 2019. In the near future, further LEBT measurements and subsequent simulations (among other to design a well-fitting cone for the RFQ), as well as mechanical error studies in TOUTATIS, will follow.
*Institute of Applied Physics **Facility for Antiproton and Ion Research ***French Alternative Energies and Atomic Energy Commission ****GSI Helmholtz Centre for Heavy Ion Research |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS032 | ||
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS033 | RF Measurements and Tuning of the 325 MHz Ladder-RFQ | linac, operation, simulation, proton | 925 |
|
|||
Funding: BMBF 05P15RFRBA Based on the positive results of the unmodulated 325 MHz Ladder-RFQ prototype from 2013 to 2016, we developed and designed a modulated 3.4 m Ladder-RFQ*. The unmodulated Ladder-RFQ features a very constant voltage along the axis. It accepted 3 times the operating power of which is needed in operation**. That level corresponds to a Kilpatrick factor of 3.1 with a pulse length of 200 µs. The 325 MHz RFQ is designed to accelerate protons from 95 keV to 3.0 MeV according to the design parameters of the proton linac within the FAIR project. This particular high frequency for a 4-ROD-RFQ creates difficulties, which triggered the development of a Ladder-RFQ with its high symmetry. The results of the unmodulated prototype have shown, that the Ladder-RFQ is very well suited for that frequency. The duty cycle is up to 5% for the applied cooling concept. Manufacturing has been completed in September 2018. We will show the finalization of assembly after manufacturing as well as low level RF measurements. The final machining step for both flatness and frequency tuning has been finished in April 2019. *Journal of Physics: Conf. Series 874 (2017) 012048 **Proceedings of LINAC2016, East Lansing, TUPLR053 |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS033 | ||
About • | paper received ※ 01 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS036 | RFQ Electrodes Change and Upgrade Option at the UNILAC HSI Injector | simulation, operation, cavity, MMI | 936 |
|
|||
In order to meet the beam intensity and quality requirements imposed by FAIR, the HSI-RFQ beam dynamics originally dating from 2009 has been re-designed recently at CERN. Front-to-end simulations demonstrated that the new design meets the FAIR targets. Implementation of the new electrodes, initially planned for 2019, will require re-adaption of the RFQ cavity rf-parameters by re-shaping the stems that keep the electrodes. However, during the beam time 2018 the existing RFQ did not reach its nominal voltage most likely due to expired lifetime of the electrodes originating from 2009. In order to shorten the RFQ maintenance period and to minimize any risk for upcoming beam time 2019, it was decided to post-pone the implementation of the new design and rather just re-producing the 2009 design electrodes. This contribution is on the re-production process as short-term solution and on the full implementation of the new design as mid-term solution. CST simulations performed at GSI assure that the resonance frequency with the new electrode geometry is recuperated through corrections of the carrier rings. The status of the exchange of the electrodes and simulations for the adaptation of the new electrode design are presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS036 | ||
About • | paper received ※ 13 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS042 | Hardware Commissioning of the Renovated PIAVE Injector at INFN-LNL | SRF, operation, MMI, ion-source | 949 |
|
|||
During 2018, the PIAVE superconducting linac injector at INFN-LNL, based on superconducting RFQs and two cryomodules with quarter wave resonators, underwent a renovation plan. This operation was strictly related to the one carried out on ALPI [1], which will become a post-accelerator for both stable and exotic beams in a near future. PIAVE Quarter Wave Resonator (QWR) cryomod-ules, in operation since 2006, were moved to ALPI to be used for the acceleration of both stable beams and future exotic beams delivered from the cyclotron target-ion-source station, after appropriate purification, charge breeding and pre-acceleration stages. In order to cope with the removal of the two QWR cryomodules in PIAVE, a newly designed 80 MHz room temperature buncher was designed, built and tested: the buncher is required so as to match the longitudinal phase space between PIAVE su-perconducting RFQs (SRFQ1 and SRFQ2) and ALPI. In the same period, substantial refurbishments on the ECR ion source platform were carried out, in particular on its infrastructure and safety equipment. A problem on an electronic component on SRFQ2, though quickly fixed, delayed beam commissioning of the PIAVE injector, which will start at the end of May 2019. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS042 | ||
About • | paper received ※ 30 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS046 | Upgrade of the 3-MeV LINAC for Testing of Accelerator Components at J-PARC | linac, operation, MMI, experiment | 960 |
|
|||
We are now upgrading a 3-MeV linac at J-PARC. The old 30-mA RFQ is replaced by a spare one of the J-PARC 50-mA RFQ. The ion source is same as the J-PARC linac’s, therefore, the peak beam current is upgraded from 30 mA to 50 mA. This 3-MeV linac will be used for development of various accelerator components, such as beam dyagnostics devices, laser charge exchange equipments, new MEBT buncher, and so on. In this paper, present status of this 3-MeV test linac is presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS046 | ||
About • | paper received ※ 30 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS047 | Radiation Measurement in the 1st Beam Commissioning Campaign of the LIPAc RFQ | neutron, proton, radiation, MMI | 964 |
|
|||
The 1st proton beam acceleration of the Linear IFMIF Prototype Accelerator (LIPAc) through its novel RFQ was succeeded on 13th June 2018. Addition to plenty of beam diagnostics equipped in the beam line, we prepared some radiation detectors placed around the accelerator in order to acquire supplemental information of the beam, as an indirect measurement. In the first day of the beam injec-tion to the RFQ, the gamma-rays corresponding to certain excited states of Al of the low power beam dump were successfully detected by a LaBr3(Ce) scintillation detec-tor. Some neutrons, which would originate from the inter-action of protons with Cu somewhere, were also ob-served. These results proved that the beam was certainly accelerated up to about 2.5 MeV, and provided us a defin-itive confidence that the RFQ was working appropriately from the very beginning of the commissioning. Also, the comparison of the radiation yields with the RFQ trans-mission provided additional information on the beam energy distribution. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS047 | ||
About • | paper received ※ 23 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS048 | Longitudinal Measurements and Beam Tuning in the J-PARC Linac MEBT1 | MEBT, linac, DTL, simulation | 968 |
|
|||
J-PARC linac is operated with design peak current of 50 mA from October 2018. Recently we succeeded in establishing longitudinal measurement at MEBT1, with which the beam matching is being studied in MEBT1. In this poster, recent measurements and beam tuning results in MEBT1 will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS048 | ||
About • | paper received ※ 30 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS051 | Lattice Design for 5MeV-125mA CW RFQ Operation in the LIPAc | linac, SRF, MMI, MEBT | 977 |
|
|||
The installation and commissioning of the LIPAc are ongoing under the Broader Approach agreement, which is the prototype accelerator of the IFMIF for proof of princi-ple and design. The deuteron beam will be accelerated by the RFQ linac from 100 keV to 5 MeV during the com-missioning phase-B and by the SRF linac up to 9 MeV during the phase-C. The commissioning phase-B+ will be implemented between phase-B and C to complete the engineering validation of the RFQ linac before installing the SRF linac. The lattice for the deuteron beam of 5 MeV and 125 mA at the commissioning phase-B+ was designed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS051 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS072 | RF DESIGN OF AN 81.25 MHz BENT-VANE TYPE RFQ | cavity, linac, ECR, simulation | 1015 |
|
|||
The bent-vane type RFQ is proposed at IMP, Chinese Academy of Sciences, which can downsize cross section and has the simple cooling system in low frequency field. The vanes of the four-vane type RFQ are bent to form the new RFQ structure. In order to research its RF properties, the prototype cavity of an 81.25 MHZ bent-vane type RFQ is designed. This paper presents the preliminary RF design of the prototype cavity. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS072 | ||
About • | paper received ※ 17 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS075 | Design and Experiment of a Window-Type CW Deuteron RFQ | cavity, experiment, operation, Windows | 1021 |
|
|||
A deutron CW RFQ was designed and fabricated in Peking University. It will accelerate 50mA CW deutron beam from 50keV to 1MeV at 162.5MHz. The novel structure of four-vane with window was used to seperate the dipole mode from the working mode. The field tuning of this RFQ was different from conventional four vane RFQ because that the four quadrants of RFQ cavity were coupled. The discipline of field tuning was studied by simulation and experiment. The beam dynamics of the RFQ was designed by equipartation and matching method, limit current effect was considered at the same time. The final design result of the RFQ was: voltage between electrodes was 60kV, transport efficiency of RFQ is 98%, field unflatness is less than 2% after tuning, the deformation of RFQcavity is less than 80um. Only 47 hours was spent to increase CW power of cavity from 0 to 55kW in high power test and The RFQ can working stable at the design voltage. The preliminary H2+ beam exeperiment has been done and 1.78mA CW beam was obtained at exit of RFQ. This paper will introduce the detail of design and experiment of the RFQ. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS075 | ||
About • | paper received ※ 22 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS080 | Status and Installation Plan of RISP RFQ at Project Site | site, cavity, experiment, resonance | 1031 |
|
|||
Funding: Supported by the Rare Isotope Science Project of Institute for Basic Science funded by the Ministry of Science, ICT (MSIP) and the National Research Foundation (NRF) of Korea (2013M7A1A1075764). The Rare Isotope Science Project (RISP) at Institute for Basic Science (IBS) has been developed a Radio Frequency Quadrupole(RFQ), which was fabricated and commissioned at the off-site test facility. An O+7 beam was accelerated from 10keV/u to 516keV/u as a preliminary beam test. For CW and high power operation, RF conditioning test was also conducted. The RISP RFQ is 5 meters long, 1 meter in diameter and weighs about 16 tons. It was disassembled and transported to the project site, Sin-dong, for installation as the injector system. The installation commenced in April 2019 and the commissioning of the injector system is expected to begin in early 2020. In this paper, the installation status and plans were summarized. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS080 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS083 | Beam Dynamics Simulation with an Updated Model for the ESS Ion Source and Low Energy Beam Transport | LEBT, solenoid, emittance, simulation | 1042 |
|
|||
Beam dynamics simulation of the ion source (IS) and low energy beam transport (LEBT) of the European Spallation Source (ESS) Linac is conducted with TraceWin and IBSimu code. TraceWin allows multi-particle tracking based on a particle-in-cell space-charge solver and is the standard simulation tool of the whole ESS Linac. IBSimu is based on a Vlasov solver and allows to simulate beam extraction from plasma as well as the beam transport in the LEBT. In preparation for beam commissioning of the IS and LEBT in the ESS Linac tunnel, which started in September 2018 and is ongoing as of the timing of writing this paper, the simulation models of the IS and LEBT in these two codes were updated. This paper reports the effort for these updates, including the beam distribution out of the IS, electromagnetic field map of the LEBT solenoid, more realistic aperture structure in the LEBT, as well as updated LEBT solenoids scan simulation. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS083 | ||
About • | paper received ※ 17 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS084 | ESS Low Energy Beam Transport Tuning During the First Beam Commissioning Stage | solenoid, LEBT, MMI, emittance | 1046 |
|
|||
Beam commissioning of the ion source (IS) and low energy beam transport (LEBT) of the European Spallation Source is ongoing on its site as of writing this paper and continues until June 2019. The LEBT consists of two solenoids with integrated dipole correctors to steer, focus, and match the high current divergent beam out of the IS to the following radio frequency quadrupole (RFQ). It is also equipped with a suite of diagnostics devices to provide a full characterization of the beam for achieving a good transport within the LEBT, optimizing the matching to the RFQ, and also providing references to numerical simulations. This paper presents results of beam characterization campaign from the ongoing beam commissioning period, including the matching at the RFQ interface based on emittance sampling for varied strengths of the solenoids and verification of the linear model for the trajectory and beam envelope. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS084 | ||
About • | paper received ※ 21 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS111 | Primary Beam Dynamics Design of a Heavy-Ion IH-DTL With Electromagnetic Quadrupoles | DTL, quadrupole, focusing, cavity | 1140 |
|
|||
A new IH-DTL beam dynamics scheme, IH-EMQ (ElectroMagnetic Quadrupole) is presented to obtain a large longitudinal acceptance. In this scheme, electromagnetic quadrupoles are installed inside the drift tubes of IH-DTL. A large-longitudinal-acceptance heavy-ion IH-DTL design is described in this paper. With the limit current of 25 mA, the 90% normalized longitudinal acceptance reaches 87.8 pi.deg. MeV for the 60 MeV 107Au30+, which is 8 times of the input emittance. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS111 | ||
About • | paper received ※ 09 April 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS118 | 3D Electromagnetic/PIC Simulations for a Novel RFQ/RFI Linac Design | linac, simulation, neutron, operation | 1158 |
|
|||
Funding: This work was supported by Ion Linac Systems, Albuquerque, NM. Using the commercial software VSim 9, a highly parallelized particle-in-cell/finite difference time-domain modeling code, the performance of an existing novel RFQ/RFI linac structure designed by Ion Linac Systems is evaluated. This effort is aimed towards having an up to date full 3D start-to-end simulation of the accelerator system, which does not exist currently. The structure used is an efficient 200-MHz, 2.5-MeV, CW-RFQ/RFI proton linac. The methods employed in VSim for modelling and parameter setup are presented, along with the simulation procedures for both the Electromagnetic and PIC solver. The important figures of merit for the structure are given including the Q-factor, field distributions, shunt impedance, and important beam properties. These are then contrasted with the initial design values and analytical calculations. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS118 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTS120 | Commissioning of the New Experimental FODO Line at the SNS Beam Test Facility | emittance, MMI, simulation, optics | 1164 |
|
|||
The SNS Beam Test Facility consists of a 2.5MeV proton accelerator and a beam line with various diagnostics for high intensity beam dynamics study. A FODO line consisting of 19 quadrupole magnets and a large dynamic range emittance monitor has been added recently. The new setup is design for experimental study of mechanisms of halo formation in mismatched high intensity beams. We present results of the new beam line commissioning with beam. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS120 | ||
About • | paper received ※ 07 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPTS007 | SPIRAL2 RFQ Bunch Length and Longitudinal Emittance Measurements. | simulation, emittance, proton, linac | 1944 |
|
|||
The SPIRAL2 RFQ is designed to accelerate light and heavy ions up to A/Q=3 in CW mode to 0.75MeV/u. During its commissioning, the bunch lengths measured using a Beam Extension Monitor were compared with simulations for different ion species (Proton, Helium, Oxygen, Argon). The longitudinal emittances measured using the 3 gradients method and a multiparticule optimization method were also compared successfully to the expected ones. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS007 | ||
About • | paper received ※ 19 April 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPTS027 | Progress of J-PARC LINAC Commissioning | linac, lattice, operation, DTL | 1990 |
|
|||
After energy and intensity upgrade to 400MeV and 50mA respectively, J-PARC linac were ready for 1 MW beam power from RCS. J-PARC is now successfully operated at 50mA/400MeV for 500kW at neutron target, and on the way to 1MW. The next milestones 1.2 and 1.5MW from RCS are relying on feasibility and property of increase of peak current to 60 mA and the pulse width to 600us in linac. Beam studies were carried out at linac to study the initial beam parameters from ion source/RFQ, to find the optimized lattice and matching, to clarify beam loss source and to mitigate the loss/residue dose for the power upgrade. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS027 | ||
About • | paper received ※ 17 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPTS038 | The Operation Status of CSNS Front End | ion-source, emittance, LEBT, operation | 2024 |
|
|||
Funding: Work supported by National Natural Science Foundation of China(11875271) China spallation neutron source (CSNS), as the China’s first 100kW beam power pulsed neutron source, its operation target beam power is now larger than 50kW. During the beam power upgrading process of CSNS to 50kW from 2018 to 2019, many improvements have been made for the front end of CSNS. In this paper, the commissioning and improvement of front end as well as the laboratory construction are introduced. The improvements mainly focus on solving the stability of ion source and the spark of Radio Frequncy quadrupole (RFQ) caused by the pre-chopped beam into RFQ. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS038 | ||
About • | paper received ※ 08 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPTS051 | Recent Beam Commissioning of LEAF at IMP | MMI, operation, acceleration, LEBT | 2043 |
|
|||
LEAF (Low Energy intense-highly-charged ion Accelerator Facility) has been successfully commissioned with several beams in CW regime, covering the M/Q from 2 to 7, such as H2+, He2+, C4+, O4+, He+, Kr13+, N2+ et al. This paper presents recent beam commissioning results. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS051 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPRB007 | RF Commissioning of the SPIRAL2 RFQ in CW Mode and Beyond Nominal Field | cavity, LLRF, controls, vacuum | 2804 |
|
|||
The SPIRAL2 RFQ was recently successfully commissioned at nominal voltage of 114 kV, corresponding to 1.65 Kilpatrick factor. The paper describes limitations of the RFQ main subsystems, cavity conditioning difficulties, as well as changes implemented in the LLRF and automatic procedures to simplify turn on and operation of the whole system. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB007 | ||
About • | paper received ※ 26 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPTS006 | Modelization of an Injector With Machine Learning | network, LEBT, solenoid, proton | 3096 |
|
|||
Modern particle accelerator projects, such as MYRRHA, have very high stability and/or reliability requirements. To meet those, it is necessary to optimize or develop new methods for the control systems. One of the difficulties lies in the relatively long computation time of current beam dynamics codes. In this context, the very low computation time of neural network is of great attraction. However, a neural network has to be trained in order to be of any use. The training of a beam dynamic predictor uses a large dataset (experimental or simulated) that represents the dynamics over the parameter space of interest. Therefore, choosing the right training dataset is crucial for the quality of the neural network predictions. In this work, a study on the sampling choice for the training data is performed to train a neural network to predict the transmission of a beam through a low energy beam transport line and a Radiofrequency Quadrupole. We show and discuss the results obtained on training data set to model the IPHI and MYRRHA injectors.
https://myrrha.be/ |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS006 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPTS031 | The Beam Dynamics Design of the Proton Synchrotron Linear Injector for Proton Therapy | DTL, proton, linac, cavity | 3167 |
|
|||
A compact room-temperature injector is designed to accelerate 20 mA proton beam from 30 keV to 7.0 MeV for the purpose of Proton Synchrotron Linear Injector for Proton Therapy. The main feature of this linac injector is that the 4-vane Radio Frequency Quadrupole (RFQ) and the Drift Tube Linac (DTL) section are matched by one triplet and powered by one RF power source. The beam is matched from the first RFQ section to the second DTL section in traverse and longitudinal directions. The overall accelerating gradient of this design has reached up to 1.6 MV/m with transmission efficiency of 96%.This injector combines a 3 m long 4-vane RFQ from 30 keV to 3.0 MeV with a 0.8 m long H-type DTL section to 7.0 MeV. In general, the design meets the requirements of the Pro-ton Synchrotron and the Terminal treatment. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS031 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPTS038 | New RFQ and Field Map Model for the ESS Linac Simulator | linac, space-charge, cavity, simulation | 3181 |
|
|||
The Java ESS Linac Simulator (JELS) is an extension of the Open XAL online model that is a fundamental part of the accelerator control system. The model is used by high-level physics applications for commissioning, tuning, and machine development activities at the European Spallation Source (ESS). This paper summarizes the upgrades done to JELS during the last year. An RFQ model is under development. The RFQ was the only element of the linac missing in the online model. The electromagnetic field map model has been refactored to ease implementation of new elements (rf cavities and magnets), and to allow the superposition of more than one field map and other elements. Further improvements have also been done in the treatment of corrector magnets and space charge for continuous beam in the Low-Energy Beam Transport (LEBT). Finally, the machine description can now include arbitrary aperture definitions. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS038 | ||
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPGW031 | Hardware Commissioning of the Refurbished Alpi LINAC at INFN-LNL to Serve as Spes Exotic Beam Accelerator | linac, MMI, alignment, operation | 3650 |
|
|||
The ALPI linac at INFN-LNL was substantially refur-bished in 2018, especially in view of its use as secondary accelerator for exotic species in the framework of the SPES project. In particular: 10 magnetic triplets were replaced with higher gradient ones; two cryomodules with quarter wave resonator were moved from the PIAVE injector to ALPI, so as to make them available both for exotic and stable beams; the cryogenic plant was renovat-ed; the whole linac, its injector and its beam lines were eventually realigned via LASER tracking (LT). The ex-pected outcome of the refurbishment project is a larger beam transmission (crucial for the efficient transport of the unavoidably low current exotic beams) and improved overall reliability so as to further extend the lifetime of an already 25 years old machine. The hardware commission-ing of this new configuration will be reported. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW031 | ||
About • | paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPGW095 | Characterization of REX/HIE-ISOLDE RFQ Longitudinal Acceptance and Transmission | ISOL, detector, linac, simulation | 3789 |
|
|||
The Isotope mass Separator On-Line DEvice (ISOLDE) based at CERN, is a Radioactive Ion Beam (RIB) facility where rare isotopes are produced from 1.4 GeV-proton collisions onto a target then are manipulated and transported to user experimental stations for studies, notably in the domain of nuclear physics. The RIB of interest is delivered to a dedicated experimental station either at low (up to 60 keV) or high energy (MeV/u range) after acceleration through the recently completed REX/HIE-ISOLDE linac upgrade. The first stage of the linac consists of normal-conducting IH and spiral-resonators and is preceded by a Radio-Frequency Quadrupole (RFQ). A description of the experimental setup and the specifications of the RFQ will serve as an introduction for the presentation of recent results about the transmission efficiency of the RFQ. Furthermore, a newly developed technique will be demonstrated, that allow the capture of ion beam intensities below the femto-Ampere range. In fine, a measurement of the longitudinal acceptance of the RFQ will be included. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW095 | ||
About • | paper received ※ 13 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||