Keyword: MEBT
Paper Title Other Keywords Page
MOPTS048 Longitudinal Measurements and Beam Tuning in the J-PARC Linac MEBT1 linac, DTL, simulation, rfq 968
 
  • M. Otani
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • K. Futatsukawa, T. Miyao
    KEK, Ibaraki, Japan
  • K. Hirano, Y. Kondo, A. Miura, H. Oguri
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
 
  J-PARC linac is operated with design peak current of 50 mA from October 2018. Recently we succeeded in establishing longitudinal measurement at MEBT1, with which the beam matching is being studied in MEBT1. In this poster, recent measurements and beam tuning results in MEBT1 will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS048  
About • paper received ※ 30 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS051 Lattice Design for 5MeV-125mA CW RFQ Operation in the LIPAc linac, SRF, rfq, MMI 977
 
  • Y. Shimosaki, A. Kasugai, K. Kondo, K. Sakamoto, M. Sugimoto
    QST, Aomori, Japan
  • L. Bellan, M. Comunian, E. Fagotti, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • B. Brañas Lasala, C. Oliver, I. Podadera
    CIEMAT, Madrid, Spain
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • N. Chauvin
    CEA-IRFU, Gif-sur-Yvette, France
  • G. Duglue, H. Dzitko
    F4E, Germany
  • R. Heidinger
    Fusion for Energy, Garching, Germany
  • H. Kobayashi, K. Takayama
    KEK, Ibaraki, Japan
 
  The installation and commissioning of the LIPAc are ongoing under the Broader Approach agreement, which is the prototype accelerator of the IFMIF for proof of princi-ple and design. The deuteron beam will be accelerated by the RFQ linac from 100 keV to 5 MeV during the com-missioning phase-B and by the SRF linac up to 9 MeV during the phase-C. The commissioning phase-B+ will be implemented between phase-B and C to complete the engineering validation of the RFQ linac before installing the SRF linac. The lattice for the deuteron beam of 5 MeV and 125 mA at the commissioning phase-B+ was designed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS051  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW053 Study with Wire Scanner and Beam Loss Monitor at CSNS-LINAC electron, experiment, linac, neutron 2598
 
  • J.L. Sun, R.Y. Qiu, T. Yang
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • J.M. Tian, T.G. Xu, Zh.H. Xu, L. Zeng
    IHEP, Beijing, People’s Republic of China
 
  China Spallation Neutron Source (CSNS) consists of 80 MeV H LINAC, 1.6 GeV RCS, RTBT line and one target. Many wire scanners and beam loss monitors (BLM) distributed along the LINAC and the RTBT for the profile and beam loss measurement. For the wire scanner, signal on the wire induced by the secondary electron is used for the profile measurement. Signal lost may happen when the wire or the signal chain shorted, thus a backup readout chain is required for the accident condition. As for the BLM, it is difficult to do the online calibration to see how sensitive the monitor is. Based on the two requests above, a crosscheck study was carried out recently, one wire scanner and the BLM next to it were chose at LINAC and RTBT. Both wire signal and BLM signal were recorded while the wire scanner crossing the beam. We found these two type of signals have the same accuracy for the profile measurement, and ~ 1 μA beam loss induced by the wire disturbance can be detected. Also thermal electron emission suspected happening during the measurement. More detailed experiment will be carried out in December. Secondary electron emission efficiency of the tungsten wire and thermal electron emission rate will be verified then.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW053  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB010 RF Power Test of the Rebuncher for Saraf-Linac cavity, EPICS, controls, linac 2815
 
  • L. Zhao, R. Berthier, F. Gougnaud, P. Guiho, N. Solenne, D. Uriot, X.W. Zhu
    CEA-DRF-IRFU, France
  • R. Braud, D. Chirpaz-Cerbat, J. Dumas, R.D. Duperrier, F. Gohier, T.J. Joannem, S. Ladegaillerie, C. Marchand, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Di Giacomo, J.F. Leyge, M. Michel
    GANIL, Caen, France
  • B. Kaizer, L. Weissman
    Soreq NRC, Yavne, Israel
 
  Funding: SNRC
Three normal conducting rebunchers will be installed at the Medium Energy Beam Transport (MEBT) of the SARAF-LINAC phase II [saraf]. The MEBT line is designed to follow a 1.3 MeV/u RFQ, is about 5 m long, and contains three 176 MHz rebunchers providing a field integral of 105 kV. CEA is in charge of the design and fabrication of the Cu plated stainless steel, 3-gap rebuncher. The high power tests and RF conditioning have been successfully performed at the CEA Saclay on the first cavity. A solid state power amplifier, which has been developed by SNRC and has been used for the RF tests. The cavity has shown a good performance according to calculations, regarding the dissipated power, peak temperatures and coupling factor. RF conditioning was started with a duty cycle of 1\% and increased gradually until continuous wave (CW), which is the nominal working mode in SARAF-LINAC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB010  
About • paper received ※ 09 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS116 The SARAF-LINAC Project 2019 Status linac, cavity, cryomodule, status 4352
 
  • N. Pichoff, R.D. Duperrier, G. Ferrand, B. Gastineau, F. Gougnaud, M. Jacquemet, C. Madec, O. Piquet, Th. Plaisant, F. Senée, D. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
  • D. Berkovits, J. Luner, A. Perry, E. Reinfeld
    Soreq NRC, Yavne, Israel
 
  SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the MEBT line and the superconducting linac (SARAF-LINAC Project). The prototypes of the 176 MHz NC rebuncher, SC cavities, RF coupler and SC solenoid-Package have been tested recently. Meanwhile, the cryomodules technical specifications have been written and called for tender. This paper presents the status of the SARAF-LINAC Project at April 2019.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS116  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)