Paper | Title | Page |
---|---|---|
TUMPA02 | Development of a Machine Protection System for KOMAC Facility | 334 |
|
||
Funding: This work is supported by the Ministry of Science, ICT & Future Planning. The Korea multi-purpose accelerator complex (KOMAC) has two beam extraction points at 20 and 100 MeV for proton beam utilization. High availability should be achieved through high system reliability and short maintenance times to prevent and mitigate damage. A machine protection system is essential for avoiding damage leading to long maintenance times. KOMAC MPS that was developed using analog circuit interlock box has its limit to cover increasing interlock signals and modify interlock logic. The disadvantage has been solved with digital-based system for more efficient logic modification and interlock extension. The MPS is configured remotely using the EPICS-based application. In this paper, we present KOMAC machine protection architecture and performance results of the new machine protection system. |
||
![]() |
Slides TUMPA02 [1.810 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUMPA02 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMPA03 | The Implementation of KSTAR Fast Interlock System using C-RIO | 337 |
|
||
Tokamak using superconducting magnets is becoming more and more important as long pulse operation and the ability to confine high temperature and density plasma to the interlock system to protect the device. KSTAR achieved H-mode operation for 70 seconds in 2016. In this case, it is necessary to have precise and fast operation protection device to protect Plasma Facing Component from high energy and long pulse plasma. The higher the energy of the plasma, the faster the protection device is needed, and the accurate protection logic must be realized through the high-speed operation using signals from various devices. To meet these requirements, KSTAR implemented the Fast Interlock System using Compact RIO. Implementation of protection logic is performed in FPGA, so it can process fast and various input and output. The EPICS IOC performs communication with peripheral devices, CRIO control, and DAQ. The hard-wired signal for high-speed operation from peripheral devices is directly connected to the CRIO. In this paper, we describe the detailed implementation of the FIS and the results of the fast interlock operation in the actual KSTAR operation, as well as future plans. | ||
![]() |
Slides TUMPA03 [1.238 MB] | |
![]() |
Poster TUMPA03 [1.072 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUMPA03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUMPA04 | Operation Status of J-PARC MR Machine Protection System and Future Plan | 341 |
|
||
The J-PARC MR's Machine Protection System (MR-MPS) was introduced from the start of beam operation in 2008. Since then, MR-MPS has contributed to the improvement of safety including stable operation of the accelerator and the experiment facilities. The present MR-MPS needs to be reviewed from the aspects such as increase of connected equipment, addition of power supply building, flexible beam abort processing, module uniqueness, service life etc. In this paper, we show the performance of MR-MPS and show future consideration of upgrade. | ||
![]() |
Slides TUMPA04 [2.247 MB] | |
![]() |
Poster TUMPA04 [3.298 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUMPA04 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA095 | NSLS-II Beamline Equipment Protection System | 638 |
|
||
The National Synchrotron Light Source II (NSLS-II) beamline Equipment Protection System (EPS) delivers a general solution for dealing with various beamline components and requirements. All IOs are monitored and controlled by Allen Bradley PLC. EPICS application and CSS panels provide high level monitoring and control. | ||
![]() |
Poster TUPHA095 [1.575 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA095 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA096 | The Machine Protection System for the Injector II | 641 |
|
||
The IMP takes responsibility for the development of Injector II. The target energy index of it is 20-25Mev , which is an intense beam proton accelerator with high operation risk. In order to implement cutting the ion source beam in time when the beam position offset happened, the Injector II Machine Protection System is developed based on FPGA controller and PLC. This system aims to prevent device damage from continuous impact of intense beam, as well as obtains and stores status data of key devices when failures occur to implement failure location and analysis. The whole system is now operating stable in field, and the beam cutting time is less than 10us. | ||
![]() |
Poster TUPHA096 [0.342 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA096 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA098 | The FRIB Run Permit System | 646 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The Facility for Rare Isotope Beams (FRIB) accelerates many different ion species and charge states defining a wide spectrum of operating modes and parameters. The role of the Run Permit System (RPS) here is to examine if a requested state is suitable for the production of beam. The decision to permit beam is based on input from configuration management databases, machine and personnel protection systems, and beam characteristics and destination. Seeded with this information, an appropriate set of operating parameters are deployed to hardware to support the requested mode. This contribution will describe the interfaces, implementation, and behavior of the RPS at FRIB. |
||
![]() |
Poster TUPHA098 [3.404 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA098 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA101 | Applying the Functional System Interaction Process at ESS | 649 |
|
||
The European Spallation Source ERIC is being built in Lund, Sweden to complement the existing neutron sources in Europe and worldwide. ESS will be the bright-est neutron source ever built upon completion and aims to have an availability of 95% during steady state opera-tions. The purpose of Machine Protection at ESS is to protect the equipment in order to support the high availability. Due to the distributed nature of Machine Protection numerous design teams are involved to implement Protection Functions. The Machine Protection Development at ESS follows the Functional Protection lifecycle for System-of-systems developed at the facility. This paper focuses on the application of the Functional System Inter-action Process part of the Functional Protection method. To obtain the system interaction model, behavioural requirements and to allocate Protection Functions use case workshops are held. The feasibility of different system architectures and protection function implementations are discussed and simulated by going through fore-seen operational sequences, use cases. The different architectures and use cases are documented using Enter-prise Architect. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA101 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA102 | New Beam Permit Process for the Proton Synchrotron Complex | 655 |
|
||
Injecting beams in CERN facilities is subject to the CERN safety rules. It is for this reason that the Beam Permit approval procedure was improved by moving away from a paper-based workflow to a digital form. For each facility the Beam Permits are signed by the various responsible specialists (Access systems, safety equipment, radiation protection, etc…). To achieve this, CERN's official Engineering Data Management System (EDMS) is used. The functionality of EDMS was extended to accommodate the additional requirements, whilst keeping a user friendly web interface. In addition, a new webpage within the CERN OP-webtools site was created with the purpose of providing a visual overview of the Beam Permit status for each facility. This new system is used in the CERN Control Centre (CCC) and it allows the operations team and all people involved in the signature process to follow the Beam Permit status in a more intuitive, efficient and safer way. | ||
![]() |
Poster TUPHA102 [1.083 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA102 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA103 | LIA-20 Experiment Protection System | 660 |
|
||
In Budker Institute of Nuclear Physics is being developed linear induction accelerator with beam energy 20MeV (LIA-20) for radiography. Distinctive feature of this accelerator in protection scope is existence both machine, person protection and experiment protection system. Main goal of this additional system is timely experiment inhibit in event of some accelerator faults. This system based on uniform protection controllers in VME form-factor which connected to each other by optical fiber. By special lines protection controller fast receive information about various faults from accelerator parts like power supplies, magnets, vacuum pumps and etc. Moreover each pulse power supply (modulator) fast send its current state through special 8 channel interlock processing board, which is base for modulator controller. This system must processing over 4000 signals for decision in several microseconds for experiment inhibit or permit.
interlocks VME LIA-20 protection |
||
![]() |
Poster TUPHA103 [17.042 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA103 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA105 | Development of Pulse Fault Sequence Analysis Application with KSTAR Data Integration System | 663 |
|
||
The Korea Superconducting Tokamak Advanced Research (KSTAR) interlock related systems are configured with various system such as fast interlock, supervisory interlock, plasma control, central control, and heating using various types of hardware, software, and interface platforms. For each system, monitoring and analysis tools are already well-developed. However, for the analysis of system fault behavior, these heterogeneous platforms do not help finding the relation of failure. When the interlock events are latched or pulse is stopped by PCS, events are transmitted to different actuators and it could make another events via various interface. In other words, it could lead another factor of fault causes on different system. Through this application we will figure out sequence of fault factor during the pulse-by-pulse KSTAR operation. The KSTAR Data Integration System (KDIS) is configured with KSTAR event-driven architecture and data processing environment. This application will be developed on the KDIS environment and synchronized with KSTAR event. This paper will present the development of shot fault sequence analysis logic and application with KDIS. | ||
![]() |
Poster TUPHA105 [1.156 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA105 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA106 | ESS Accelarator Oxygen Depletion Hazard Detection System | 666 |
|
||
At the European Spallation Source ERIC (ESS), cryogenic cooling is essential for various equipment of the facility. The ESS Superconducting LINAC and the ESS Cryomodule Test Stand, will require major cryogenic services in order to be supplied with liquid nitrogen and helium. Since the use of cryogenic fluids can be associated with Oxygen Depletion Hazard (ODH), the ESS Protection and Safety Systems group will install an ODH Detection System which is a PLC-based alarm system. This system will monitor real time Oxygen concentration levels in designated areas, with the aim to alarm personnel if the oxygen level is detected below certain thresholds. This paper gives an overview about the requirements, system architecture, hardware and software of the ODH Detection System in ESS Accelerator buildings | ||
![]() |
Poster TUPHA106 [2.899 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA106 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPHA107 | Technical and Organisational Complexities with a Distributed MP Strategy at ESS | 670 |
|
||
The reliable protection of the ESS equipment is important for the success of the project. This requires multiple systems and subsystems to perform the required protection functions that prevent undesired hazardous events. The complexity of the machine, the different technical challenges and the intrinsic organisational difficulties for an in-kind project like ESS impose serious challenges to the distributed Machine Protection strategy. In this contribution, the difficulties and adopted solutions are described to exemplify the technical challenges encountered in the process. | ||
![]() |
Poster TUPHA107 [0.200 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA107 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUSH202 | The Laser Megajoule Facility: Personnel Safety System | 994 |
|
||
The Laser MegaJoule (LMJ) is a 176-beam laser facility, located at the CEA CESTA Laboratory near Bordeaux (France). It is designed to deliver about 1.4 MJ of energy to targets, for high energy density physics experiments, including fusion experiments. The first 8-beams bundle was operated in October 2014 and a new bundle was commissioned in October 2016. The next two bundles are on the way. The presentation gives an overview of the Personnel Safety System architecture, focusing on the wired safety subsystem named BT2. We describe the specific software tool used to develop wired safety functions. This tool simulates hardware and bus interfaces, helps writing technical specifications, conducts functional analysis, performs functional tests and generates documentation. All generated documentation and results from the tool are marked with a unique digital signature. We explain how the tool demonstrates SIL3 compliance of safety functions by integrating into a standard V-shaped development cycle. | ||
![]() |
Poster TUSH202 [3.406 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUSH202 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THCPA01 | Safety Instrumented Systems and the AWAKE Plasma Control as a Use Case | 1206 |
|
||
Safety is likely the most critical concern in many process industries, yet there is a general uncertainty on the proper engineering to reduce the risks and ensure the safety of persons or material at the same time of providing the process control system. Some of the reasons for this misperception are unclear requirements, lack of functional safety engineering knowledge or incorrect protection functionalities attributed to the BPCS (Basic Process Control System). Occasionally the control engineers are not aware of the hazards inherent to an industrial process and this causes the lack of the right design of the overall controls. This paper illustrates the engineering of the SIS (Safety Instrumented System) and the BPCS of the plasma vapour controls of the AWAKE R&D project, the first proton-driven plasma wakefield acceleration experiment in the world. The controls design and implementation refers to the IEC61511/ISA84 standard, including technological choices, design, operation and maintenance. Finally, the publication reveals usual difficulties appearing in such kind of industrial installations and the actions to be done to ensure the proper functional safety system design. | ||
![]() |
Slides THCPA01 [6.199 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THCPA02 | ESS Accelerator Safety Interlock System | 1213 |
|
||
Providing and assuring safe conditions for personnel is a key parameter required to operate the European Spallation Source (ESS). The main purpose of the Personnel Safety Systems (PSS) at ESS is to protect workers from the facility's ionising prompt radiation hazards, but also identify as well as mitigate against other hazards such as high voltage or oxygen depletion. PSS consist of three systems: the Safety interlock system, the Access control system and the Oxygen deficiency hazard (ODH) detection system. The Safety interlock system ensures the safety functions of the PSS by controlling all hazardous equipment for starting the beam operation and powering the RF-powered units and allowing its operation when personnel is safe. This paper will describe the ESS PSS Accelerator Safety interlock system's scope, strategy, methodology and current status. | ||
![]() |
Slides THCPA02 [4.292 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA02 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THCPA03 | Applying Layer of Protection Analysis (LOPA) to Accelerator Safety Systems Design | 1217 |
|
||
Large accelerator safety system design is complex and challenging. The complexity comes from the wide geographical distribution and the entangled control/protection functions that are shared across multiple control systems. To ensure safety performance and avoid unnecessary overdesign, a systematic approach should be followed when setting the functional requirements and the associated safety integrity. Layer of Protection Analysis (LOPA) is a method in IEC61511 for assigning the SIL to a safety function. This method is well suited for complex applications and is widely adopted in the process industry. The outputs of the LOPA study provide not only the basis for setting safety functions design objective, but also a reference document for managing system change and determining test scope. In this paper, SLAC credited safety systems are used to demonstrate the application of this semi-quantitative method. This example will illustrate how to accurately assess the hazardous event, analyze the independence of different protection layers, and determine the reliability of a particular protection function. | ||
![]() |
Slides THCPA03 [2.206 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THCPA04 | Development of a Safety Classified System with LabView and EPICS | 1221 |
|
||
The Spiral2 linear accelerator will drive high intensity beams, up to 5 mA and 200 kW at linac exit. In tuning phase, or when not used by the experimental areas, the beam will be stopped in a dedicated beam dump. To avoid excessive activation of this beam dump, in order to allow human intervention, a safety classified system had been designed to integrate the number of particles dropped in it within each 24 hours time frame. For each kind of beam, a threshold will be defined and as soon as the threshold is reached a beam cut-off will be sent to the machine protection system. This system, called SLAAF: System for the Limitation of the Activation of the beam dump (Arret Faisceau in French) rely on LabView and EPICS (Experimental Physics and Industrial Control) technology. This paper will describe the specification and development processes and how we dealt to meet both functional and safety requirements using two technologies not commonly used for safety classified systems. | ||
![]() |
Slides THCPA04 [0.471 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA04 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THCPA05 |
Development and Implementation of the Treatment Control System in Shanghai Proton Therapy Facility | |
|
||
Shanghai Proton Therapy Facility is in the phase of commissioning. We developed the treatment control system in consideration of a plurality of IEC standards. The system is comprised of the irradiation control sub-system (ICS) and the treatment interlock sub-system (TIS). The irradiation flow was implemented and monitored by firmware in ICS, with the benefit of low latency. Hardware based TIS conducts the calculation of interlock logics. The protection of patients and the machine from hazards could be guaranteed by TIS with high reliability. ICS is integrated into the main timing system, and ICS controls treatment-related sequence of the accelerator complex via the timing system. The function of switching treatment rooms is realized by hardware in the timing system. The design philosophy, the safety analysis and the design of critical modules are demonstrated in the paper. | ||
![]() |
Slides THCPA05 [2.278 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THCPA06 | A Real-Time Beam Monitoring System for Highly Dynamic Irradiations in Scanned Proton Therapy | 1224 |
|
||
Funding: This work is supported by the Giuliana and Giorgio Stefanini Foundation. Patient treatments in scanned proton therapy exhibit dead times, e.g. when adjusting beamline settings for a different energy or lateral position. On the one hand, such dead times prolong the overall treatment time, but on the other hand they grant possibilities to (retrospectively) validate that the correct amount of protons has been delivered to the correct position. Efforts in faster beam delivery aim to minimize such dead times, which calls for different means of monitoring irradiation parameters. To address this issue, we report on a real-time beam monitoring system that supervises the proton beam position and current during beam-on, hence while the patient is under irradiation. For this purpose, we sample 1-axis Hall probes placed in beam-scanning magnets and plane-parallel ionization chambers every 10 μs. FPGAs compare sampled signals against verification tables - time vs. position/current charts containing upper and lower tolerances for each signal - and issue interlocks whenever samples fall outside. Furthermore, we show that by implementing real-time beam monitoring in our facility, we are able to respect patient safety margins given by international norms and guidelines. |
||
![]() |
Slides THCPA06 [1.841 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA06 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THCPA07 | Development of an Expert System for the High Intensity Neutrino Beam Facility at J-PARC | 1229 |
|
||
A high intensity neutrino beam produced at J-PARC is utilized by the T2K long baseline neutrino oscillation experiment. To generate the high intensity neutrino beam, a high intensity proton beam is extracted from the 30 GeV Main Ring synchrotron to the neutrino primary beamline. In the beamline, one mistaken shot can potentially do serious damage to beamline equipment. To avoid such a consequence, many beamline equipment interlocks which automatically stop the beam operation are implemented. If an interlock is activated, the beam operator references the operation manual, confirms the safety of the beamline equipment and resumes the beam operation. In order to improve the present system, we are developing an expert system for prompt and efficient understanding of the status of the beamline to quickly resume the beam operation. When an interlock is activated, the expert system references previous interlock patterns and infers what happened in the beamline. And the expert system will suggest how to resume the beam operation to the beam operator. We have developed and evaluated this expert system. In this talk, we will report the development status and initial results. | ||
![]() |
Slides THCPA07 [2.034 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA07 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMPA01 | The Interlock System of FELiChEM | 1298 |
|
||
Funding: National Natural Science Foundation of China(No.11375186, No.21327901) FELiChEM is an infrared free-electron laser user facility under construction at NSRL. The design of the interlock system of FELiChEM is based on EPICS. The interlock system is made up of the hardware interlock system and the software interlock system. The hardware interlock system is constructed with PROFINET and redundancy technology. The software interlock system is designed with an independent configuration file to improve the flexibility. The test results of the prototype system are also described in this paper. |
||
![]() |
Slides THMPA01 [1.270 MB] | |
![]() |
Poster THMPA01 [0.881 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THMPA01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA096 | ALBA Equipment Protection System, Current Status | 1599 |
|
||
ALBA is the name of Barcelona's 3GeV Synchrotron Lightsource. In operation since 2012, it currently hosts experiments 24/7 in its 8 beamlines with 3 more in development. The aim of ALBA Equipment Protection System is to avoid damage of hardware by managing sets of permits and interlock signals. The EPS scope covers not only ALBA accelerators and its beamlines but also the accessory laboratories like RF, Optics, Vacuum, etc. It is built on B&R PLCs with CPUs installed in cabinets in ALBA service and experimental areas and a network of remote I/O modules installed in shielded boxes inside the tunnel and other irradiated zones. CPU's and Remote models are interconnected by the X2X field-bus. Signals managed by PLC's include interlocks, temperature readouts, flow-meters, flow-switches, thermo-switches, shutters, pneumatic actuators, fluorescence screens, etc. This paper describes the design and the architecture of the Equipment Protection System, the current status, the tools used by the EPS team and the recent improvements in terms of reaction time and interaction with other systems via Powerlink and fast interlock systems. | ||
![]() |
Poster THPHA096 [1.080 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA096 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA098 | Development of a PXI Based Test Stand for Automatization of the Quality Assurance of the Patient Safety System in a Proton Therapy Centre | 1604 |
|
||
At the Centre for Proton Therapy at the Paul Scherrer Institute a cyclotron, two gantries and a fixed beamline are being used to treat tumours. In order to prevent non-optimal beam delivery, an interlock patient safety system (PaSS) was implemented that interrupts the treatment if any sub-system reports an error. To ensure correct treatment, the PaSS needs to be thoroughly tested as part of the regular quality assurance as well as after each change. This typically required weeks of work, extensive beam-time and may not comprehensively detect all possible failure modes. With the opportunity of the installation of a new gantry, an automated PaSS test stand was developed that can emulate the rest of the facility. It consists of a NI PXI chassis with virtually unlimited IOs synchronously stimulated or sampled at 1MHz, a set of adapters to connect each type of interfaced signal and a runtime environment. We have also developed a VHDL based formal language to describe stimuli, assertions and specific measurements. We present the use of our test stand in the verification and validation of the PaSS, showing how its full quality assurance, including report generation was reduced to minutes. | ||
![]() |
Poster THPHA098 [1.561 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA098 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA099 | New Concepts for Access Devices in the SPS Personnel Protection System | 1608 |
|
||
The accelerator facilities at CERN span large areas and the personnel protection systems consist of hundreds of interlocked doors delimiting the accelerator zones. Entrance into the interlocked zones from the outside is allowed only via a small number of access points. These are no longer made of doors which have left their place to turnstiles and then to mantraps or Personnel Access Devices (PAD). Originally meant for high security zones, the commercially available PADs have a number of CERN-specific additions. This paper presents in detail the purpose and characteristics of each piece of equipment constituting the access devices and its integration within the personnel protection system. Key concepts related to personnel safety (e.g. interlocked safety tokens, patrols) and to access control (e.g. access authorisation, biometric identity verification, equipment checks) are introduced and solutions discussed. Three generations of access devices are presented, starting from the LHC model put in service in 2008, continuing with the PS devices operational since 2014 and finally introducing the latest model under development for the refurbishment of the SPS Personnel Protection System. | ||
![]() |
Poster THPHA099 [0.830 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA099 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA100 | Integration of Personal Protective Equipment Checks in Access Control | 1613 |
|
||
Access to the interlocked zones of the CERN accelerator complex is allowed only for personnel wearing standard personal protective equipment. This equipment is complemented by specialised personal protective devices in case of specific hazards related to the remnant radiation or the presence of cryogenic fluids. These complex devices monitor the environment in the vicinity of the user and warn the user of the presence of hazards such as radiation or oxygen deficiency. The use of the devices is obligatory, but currently only enforced by procedures. In order to improve the safety of the personnel it has been proposed to verify that users are carrying their devices switched on when entering. This paper describes the development of a specialised multi-protocol terminal, based on Texas Instruments digital signal processor and integrated in the personnel protection system. The device performs local checks of the presence and status of operational dosimeter prior to allowing access to the interlocked zones. The results of the first tests in the Proton Synchrotron accelerator complex will be presented. | ||
![]() |
Poster THPHA100 [1.914 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA100 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA101 | Review of Personnel Safety Systems at DLS | 1617 |
|
||
Diamond Light Source is celebrating 10 years of "users" at its facility in Oxfordshire, England. Its safety systems have been designed to the standard EN61508, with the facility constructed in 3 phases, which are just concluding. The final "phase 3" beamline Personnel Safety System has been signed-off; hence it is timely to review our experience of the journey with these systems. | ||
![]() |
Poster THPHA101 [0.730 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA101 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA105 | ESS Target Safety System Design | 1622 |
|
||
The purpose of the Target Safety System (TSS) is to protect the public from exposure to unsafe levels of radiation, prevent the release of radioactive material beyond permissible limits, and bring the neutron spallation function into a safe state. In order to fulfill the necessary safety functions, the TSS continually monitors critical parameters within target station systems. If any parameter exceeds an acceptable level, the TSS actuates contactors to cut power to components at the front end of the accelerator and prevent the beam from reaching the target. The TSS is classified as a safety structure, system and component, relevant for the safety of the public and the environment. As such, it requires the highest level of rigor in design and quality for interlock systems at the ESS. Standards are applied to provide a guideline for building the TSS architecture and designing in resistance to single failures and common cause failures. This paper describes the system architecture and design of the TSS, including interfaces with target station and accelerator systems, and explains how the design complies with authority conditions and requirements imposed by development standards. | ||
![]() |
Poster THPHA105 [0.338 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA105 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA106 | Commissioning of a New Dose Rate Monitoring System at the S-DALINAC | 1625 |
|
||
Funding: RTG 2128 AccelencE Recently a new radiation protection interlock system has been established at the Darmstadt superconducting linear electron accelerator S-DALINAC [*]. It prevents the staff from entering radiation protection areas during operation and allows a systematic scanning of these areas for workers before running the accelerator. As an extension of the new interlock, a new dose rate monitoring system has been developed using PIN diodes and self-made ion chambers. These detectors will be used to perfom online dose rate measurements in order to switch automtically the status of illuminated radiation protection panels, which show the current level of protection area. Furthermore, they will be used to characterize systematically the radiation fluxes inside the accelerator facility and to support the beam diagnostics. The readout electronics consists ofμcontrollers with ethernet interfaces using TCP/IP based serial communication. The data acquisition is integrated into the EPICS based control system. First results of the commissioning will be presented. [*] M. Arnold et al., THE NEW PLC BASED RADIATION SAFETY INTERLOCK SYSTEM AT S-DALINAC, Proceedings of IPAC2014, Dresden, Germany, 2014. |
||
![]() |
Poster THPHA106 [1.428 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA106 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA107 | Safety Control of the Spiral2 Radioactive Gas Storage System | 1629 |
|
||
The phase 1 of the SPIRAL2 facility, extension project of the GANIL laboratory, is under construction and the commissioning had started. During the run phases, radioactive gas, mainly composed of hydrogen, will be extracted from the vacuum chambers. The radioactive gas storage system function is to prevent any uncontrolled release of activated gas by storing it in gas tank during the radioactive decay, while monitoring the hydrogen rate in the tanks under a threshold. This confinement of radioactive materials is a safety function. The filling and the discharge of the tanks are processed with monostable valves, making the storage a passive safety system. Two separate redundant control subsystems, based on electrical hardware technologies, allow the opening of the redundant safety valves, according to redundant pressure captors, redundant di-hydrogen rate analyzers and limit switches of the valves. The redundancy of the design of the control system meets the single failure criterion. The monitoring of the consistency of the two redundant safety subsystems, and the non-safety control functions of the storage process, are then managed by a Programmable Logic Controller. | ||
![]() |
Poster THPHA107 [0.530 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA107 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA108 | Versatile Service for the Protection of Experimental Areas at CERN | 1634 |
|
||
In addition to the large LHC experiments, CERN hosts a number of other experimental areas with a rich research program ranging from fundamental physics to medical applications. The risk assessments have shown a large palette of potential hazards (radiological, electrical, chemical, laser, etc.) that need to be properly mitigated in order to ensure the safety of personnel working inside these areas. A Personnel Protection System, typically, accomplishes this goal by implementing a certain number of heterogeneous functionalities as interlocks of critical elements, management of a local HMI, data monitoring and interfacing with RFID badge readers. Given those requirements, reducing system complexity and costs are key parameters to be optimized in the solution. This paper is aimed at summarizing the findings, in terms of costs, complexity and maintenance reduction, offered by a technology from National Instruments® based on cRIO controllers and a new series of SIL-2 certified safety I/O modules. A use case based on a service for the protection of Class 4 laser laboratories will be described in detail. | ||
![]() |
Poster THPHA108 [2.553 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA108 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA109 | Improving the Safety and Protective Automatic Actions of the CMS Electromagnetic Calorimeter Detector Control System | 1639 |
|
||
The CMS ECAL Detector Control System (DCS) features several monitoring mechanisms able to react and perform automatic actions based on pre-defined action matrices. The DCS is capable of early detection of anomalies inside the ECAL and on its off-detector support systems, triggering automatic actions to mitigate the impact of these events and preventing them from escalating to the safety system. The treatment of such events by the DCS allows for a faster recovery process, better understanding of the development of issues, and in most cases, actions with higher granularity than the safety system. This paper presents the details of the DCS automatic action mechanisms, as well as their evolution based on several years of CMS ECAL operations. | ||
![]() |
Poster THPHA109 [1.333 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA109 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPHA110 | Machine Protection System Research and Development for the Fermilab PIP-II Proton Linac | 1643 |
|
||
PIP-II is a high intensity proton linac being design to support a world-leading physics program at Fermilab. Initially it will provide high intensity beams for Fermilab's neutrino program with a future extension to other applications requiring an upgrade to CW linac operation (e.g. muon experiments). The machine is conceived to be 2 mA CW, 800 MeV H− linac capable of working initially in a pulse (0.55 ms, 20 Hz) mode for injection into the existing Booster. The planned upgrade to CW operation implies that the total beam current and damage potential will be greater than in any present HEP hadron linac. To mitigate the primary technical risk and challenges associated PIP-II an integrated system test for the PIP-II front-end technology is being developed. As part of the R&D a robust machine protection system (MPS) is being designed. This paper describes the progress and challenges associated with the MPS. | ||
![]() |
Poster THPHA110 [1.676 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA110 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |